login
Decimal expansion the Bessel moment c(3,1) = Integral_{0..inf} x K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.
6

%I #8 Jun 01 2016 02:49:58

%S 5,8,5,9,7,6,8,0,9,6,7,2,3,6,4,7,2,2,6,5,0,3,9,0,5,7,2,2,1,8,0,6,9,2,

%T 6,7,2,7,3,8,5,0,7,5,2,4,0,8,9,6,4,0,6,5,1,6,6,5,7,5,0,4,7,2,2,5,1,6,

%U 5,2,3,8,4,8,8,7,1,3,6,6,3,5,6,9,6,5,2,1,7,8,1,2,4,1,5,7,3,9,5,7,6,5,7,8

%N Decimal expansion the Bessel moment c(3,1) = Integral_{0..inf} x K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.

%H David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008.

%F c(3, 1) = (1/12)*(PolyGamma(1, 1/3) - PolyGamma(1, 2/3)).

%e 0.585976809672364722650390572218069267273850752408964065166575...

%t c[3, 1] = (1/12)*(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]);

%t RealDigits[c[3, 1], 10, 104][[1]]

%Y Cf. A273816 (c(3,0)), A273818 (c(3,2)), A273819 (c(3,3)).

%K nonn,cons

%O 0,1

%A _Jean-François Alcover_, May 31 2016