login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273819 Decimal expansion the Bessel moment c(3,3) = Integral_{0..inf} x^3 K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind. 6
1, 1, 4, 6, 3, 5, 7, 4, 6, 2, 2, 9, 8, 1, 9, 6, 3, 0, 2, 0, 0, 5, 2, 0, 7, 6, 2, 9, 5, 7, 4, 2, 5, 6, 8, 9, 6, 9, 8, 4, 6, 7, 6, 6, 9, 8, 7, 8, 6, 1, 8, 7, 5, 3, 5, 5, 5, 4, 3, 3, 3, 9, 6, 3, 0, 0, 2, 2, 0, 3, 1, 7, 9, 8, 4, 9, 5, 1, 5, 5, 1, 4, 2, 6, 2, 0, 2, 9, 0, 4, 1, 6, 5, 5, 4, 3, 1, 9, 4, 3, 5, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..101.

David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.

FORMULA

c(3, 3) = (1/9)*(PolyGamma(1, 1/3) - PolyGamma(1, 2/3)) - 2/3.

EXAMPLE

0.1146357462298196302005207629574256896984676698786187535554333963...

MATHEMATICA

c[3, 3] = (1/9)*(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]) - 2/3;

RealDigits[c[3, 3], 10, 102][[1]]

CROSSREFS

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)).

Sequence in context: A081709 A200640 A179453 * A276761 A073000 A198113

Adjacent sequences:  A273816 A273817 A273818 * A273820 A273821 A273822

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, May 31 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 21:28 EST 2019. Contains 329106 sequences. (Running on oeis4.)