login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion the Bessel moment c(3,3) = Integral_{0..inf} x^3 K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.
6

%I #10 Oct 23 2023 10:02:11

%S 1,1,4,6,3,5,7,4,6,2,2,9,8,1,9,6,3,0,2,0,0,5,2,0,7,6,2,9,5,7,4,2,5,6,

%T 8,9,6,9,8,4,6,7,6,6,9,8,7,8,6,1,8,7,5,3,5,5,5,4,3,3,3,9,6,3,0,0,2,2,

%U 0,3,1,7,9,8,4,9,5,1,5,5,1,4,2,6,2,0,2,9,0,4,1,6,5,5,4,3,1,9,4,3,5,4

%N Decimal expansion the Bessel moment c(3,3) = Integral_{0..inf} x^3 K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.

%H David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008.

%F c(3, 3) = (1/9)*(PolyGamma(1, 1/3) - PolyGamma(1, 2/3)) - 2/3.

%e 0.1146357462298196302005207629574256896984676698786187535554333963...

%t c[3, 3] = (1/9)*(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]) - 2/3;

%t RealDigits[c[3, 3], 10, 102][[1]]

%o (PARI) (zetahurwitz(2,1/3)-zetahurwitz(2,2/3)-6)/9 \\ _Charles R Greathouse IV_, Oct 23 2023

%Y Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)).

%K nonn,cons

%O 0,3

%A _Jean-François Alcover_, May 31 2016