login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216638
First appearance of the Fibonacci numbers in the decimals of Pi.
0
1, 1, 6, 9, 4, 11, 110, 93, 86, 130, 11, 1638, 229, 3056, 268, 1510, 10118, 11477, 727, 17711, 83295, 59861, 22334, 19659, 301848, 977089, 59943, 414086, 536681, 649382, 2729036, 68232754, 17793212, 33986473, 695781, 135830965, 117951651, 36978613, 170243036, 366567058
OFFSET
1,3
FORMULA
a(n) = A014777(A000045(n)). - Pontus von Brömssen, Aug 31 2024
EXAMPLE
Fibonacci(4) is 3, 3 appears for the first time in decimals of Pi in position 9, so a(4) = 9.
MATHEMATICA
(* Determine the decimal digits of Pi following the decimal point. *)
decimalPiDigits[n_] := First@RealDigits[Pi, 10, n, -1];
(* Find the position of first occurrence of 'sublist' in 'list', or Indeterminate if it doesn't occur. *)
firstPosition[sublist_, list_] :=
With[{p = SequencePosition[list, sublist]},
If[Length[p] == 0, Indeterminate, First@First@p]];
(* Find the first occurrence of the given digits in the decimal digits of Pi by calculating ever more digits of Pi, as needed. *)
findDigitSequenceInDecimalPiDigits[seq_] :=
First@NestWhile[
With[
{
numdigits = Max[1, 2*Last[#]] (*
How many digits will we calculate in this iteration? *)
},
{firstPosition[seq, decimalPiDigits[numdigits]], numdigits}
] &,
{Indeterminate, 0},
Not@*IntegerQ@*First
];
(* Find the first 30 entries. *)
Table[findDigitSequenceInDecimalPiDigits[
IntegerDigits@Fibonacci[n]], {n, 1, 30}]
(* Sidney Cadot, Feb 25 2023 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
a(31)-a(40) from Pontus von Brömssen, Aug 31 2024
STATUS
approved