login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273169
Numerators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).
1
1, 1, 1, 3, 1, 1, 5, 15, 3, 1, 35, 7, 7, 1, 1, 63, 105, 15, 15, 5, 1, 231, 99, 495, 55, 33, 3, 1, 429, 3003, 1001, 1001, 91, 91, 7, 1, 6435, 715, 1001, 91, 455, 7, 5, 1, 1, 12155, 21879, 1989, 1547, 1071, 153, 17, 153, 9, 1, 46189, 20995, 62985, 1615, 4845, 969, 1615, 285, 95, 5, 1
OFFSET
0,4
COMMENTS
The denominator triangle is given in A273170.
Int(cos^(2*n)(x), x) = R(n, 0)*x + Sum_{m = 1..n} R(n, m)*sin(2*m*x), n >= 0, with the rational triangle a(n, m)/A273170(n, m).
For the rational triangle for the even powers of cos see A273167/A273168. See also the even-indexed rows of A273496.
For the integral over odd powers of cos see the rational triangle A273171/A273172.
The signed triangle S(n, m) = R(n, m)*(-1)^m appears in the integral of even powers of sin as Int(sin^(2*n)(x), x) = S(n , 0)*x + Sum_{m = 1..n} S(n, m)*sin(2*m*x), n >= 0.
REFERENCES
I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981, pp. 168-169, 2.513 1. and 3.
FORMULA
a(n, m) = numerator(R(n, m)) with the rationals R(n, m) defined by R(n, 0) = (1/2^(2*n))*binomial(2*n,n) and R(n, m) = (1/2^(2*n))*binomial(2*n, n-m)/m for m = 1, ..., n, n >= 0. See the Gradstein-Ryshik reference (where the sin arguments are falling).
EXAMPLE
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 3 1 1
3: 5 15 3 1
4: 35 7 7 1 1
5: 63 105 15 15 5 1
6: 231 99 495 55 33 3 1
7: 429 3003 1001 1001 91 91 7 1
8: 6435 715 1001 91 455 7 5 1 1
9: 12155 21879 1989 1547 1071 153 17 153 9 1
...
row 10: 46189 20995 62985 1615 4845 969 1615 285 95 5 1,
...
The rational triangle R(n, m) begins:
n\m 0 1 2 3 4 ...
0: 1/1
1: 1/2 1/4
2: 3/8 1/4 1/32
3: 5/16 15/64 3/64 1/192
4: 35/128 7/32 7/128 1/96 1/1024
...
row 5: 63/256 105/512 15/256 15/1024 5/2048 1/5120,
row 6: 231/1024 99/512 495/8192 55/3072 33/8192 3/5120 1/24576,
row 7: 429/2048 3003/16384 1001/16384 1001/49152 91/16384 91/81920 7/49152 1/114688,
row 8: 6435/32768 715/4096 1001/16384 91/4096 455/65536 7/4096 5/16384 1/28672 1/524288,
row 9: 12155/65536 21879/131072 1989/32768 1547/65536 1071/131072 153/65536 17/32768 153/1835008 9/1048576 1/2359296,
row 10: 46189/262144 20995/131072 62985/1048576 1615/65536 4845/524288 969/327680 1615/2097152 285/1835008 95/4194304 5/2359296 1/10485760,
...
n = 3: Int(cos^6(x), x) = (5/16)*x + (15/64)*sin(2*x) + (3/64)*sin(4*x) + (1/192)*sin(6*x).
Int(sin^6(x), x) = (5/16)*x - (15/64)*sin(2*x) + (3/64)*sin(4*x) - (1/192)*sin(6*x).
MATHEMATICA
T[MaxN_] := Function[{n}, With[{exp = Expand[(1/2)^(2 n) (Exp[I x] + Exp[-I x])^(2 n)]}, Prepend[1/# Coefficient[exp, Exp[I 2 # x]] & /@ Range[1, n], exp /. {Exp[_] -> 0}]]][#] & /@ Range[0, MaxN];
T[5] // ColumnForm (* Bradley Klee, Jun 14 2016 *)
PROG
(PARI) a(n, m) = if (m == 0, numerator((1/2^(2*n))*binomial(2*n, n)), numerator((1/2^(2*n))*binomial(2*n, n-m)/m));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
CROSSREFS
KEYWORD
nonn,tabl,frac,easy
AUTHOR
Wolfdieter Lang, Jun 13 2016
STATUS
approved