OFFSET
0,2
COMMENTS
See the numerator triangle A273169, also for the formula of int(cos^(2*n)(x), x) in terms of x and sin(2*m*x).
FORMULA
a(n, m) = denominator(R(n, m)) with the rationals R(n, m) defined by R(n, 0) = (1/2^(2*n))*binomial(2*n,n) and R(n, m) = (1/2^(2*n))*binomial(2*n, n-m)/m for m = 1, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273169 (where the sin arguments are falling).
EXAMPLE
See A273169, also for the rationals R(n,m).
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 ...
0: 1
1: 2 4
2: 8 4 32
3: 16 64 64 192
4: 128 32 128 96 1024
5: 256 512 256 1024 2048 5120
6: 1024 512 8192 3072 8192 5120 24576
...
row 7: 2048 16384 16384 49152 16384 81920 49152 114688,
row 8: 32768 4096 16384 4096 65536 4096 16384 28672 524288,
row 9: 65536 131072 32768 65536 131072 65536 32768 1835008 1048576 2359296,
row 10: 262144 131072 1048576 65536 524288 327680 2097152 1835008 4194304 2359296 10485760,
...
PROG
(PARI) a(n, m) = if (m == 0, denominator((1/2^(2*n))*binomial(2*n, n)), denominator((1/2^(2*n))*binomial(2*n, n-m)/m));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jun 13 2016
STATUS
approved