login
A273172
Triangle for denominators of coefficients for integrated odd powers of cos(x) in terms sin((2*m+1)*x).
2
1, 4, 12, 8, 48, 80, 64, 64, 320, 448, 128, 64, 320, 1792, 2304, 512, 512, 1024, 7168, 9216, 11264, 1024, 4096, 4096, 14336, 6144, 45056, 53248, 16384, 49152, 81920, 16384, 147456, 180224, 212992, 245760, 32768, 24576, 40960, 16384, 147456, 90112, 106496, 983040, 1114112, 131072, 131072, 327680, 65536, 65536, 720896, 3407872, 1310720, 4456448, 4980736, 262144, 1572864, 524288, 917504, 393216, 11534336, 13631488, 1572864, 8912896, 19922944, 22020096
OFFSET
0,2
COMMENTS
For the numerator triangle see A273171, also for the cos^(2*n+1) formula, and the Gradstein-Ryshik reference.
FORMULA
a(n, m) = denominator(R(n, m)) with the rationals R(n, m) = (1/2^(2*n))* binomial(2*n+1, n-m) / (2*m+1) for m = 0, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273171 (where the sin arguments are falling).
EXAMPLE
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 ...
0: 1
1: 4 12
2: 8 48 80
3: 64 64 320 448
4: 128 64 320 1792 2304
5: 512 512 1024 7168 9216 11264
6: 1024 4096 4096 14336 6144 45056 53248
...
row 7: 16384 49152 81920 16384 147456 180224 212992 245760,
row 8: 32768 24576 40960 16384 147456 90112 106496 983040 1114112,
row 9: 131072 131072 327680 65536 65536 720896 3407872 1310720 4456448 4980736,
row 10: 262144 1572864 524288 917504 393216 11534336 13631488 1572864 8912896 19922944 22020096,...
For the head of the rational triangle see A273171.
PROG
(PARI) a(n, m) = denominator((1/2^(2*n))*binomial(2*n+1, n-m)/(2*m+1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
CROSSREFS
Cf. A273171.
Sequence in context: A156681 A231100 A229179 * A307853 A334768 A247327
KEYWORD
nonn,tabl,frac,easy
AUTHOR
Wolfdieter Lang, Jun 13 2016
STATUS
approved