login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273175 Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 605", based on the 5-celled von Neumann neighborhood. 4
1, 8, 20, 41, 61, 105, 125, 193, 201, 317, 309, 469, 429, 640, 584, 861, 757, 1060, 944, 1361, 1169, 1600, 1388, 1977, 1681, 2256, 1884, 2693, 2253, 3016, 2488, 3541, 2949, 3929, 3249, 4485, 3673, 4969, 4065, 5544, 4508, 6085, 4937, 6745, 5469, 7300, 5876 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=605; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A272943 A272995 A273111 * A318071 A308904 A192753
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 17 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 22:05 EDT 2024. Contains 375910 sequences. (Running on oeis4.)