The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135447 Period 10: repeat [1, 2, 4, 8, 5, -1, -2, -4, -8, -5]. 1
1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n+1) == 2*a(n) mod 11.
a(n) = (1/2 - (7*sqrt(5)/10))*cos(Pi*n/5) + (sqrt(2)/10)*(12*sqrt(5+sqrt(5))+7*sqrt(5-sqrt(5)))*sin(Pi*n/5) + (1/2 + (7*sqrt(5)/10))*cos(3*Pi*n/5) - (sqrt(2)/10)*(12*sqrt(5-sqrt(5)) - 7*sqrt(5+sqrt(5)))*sin(3*Pi*n/5). - Richard Choulet, Jan 04 2008
O.g.f.: (5*x^3+3*x^2+x+1)/(x^4-x^3+x^2-x+1). - R. J. Mathar, Jan 07 2008
a(n) = a(n-1)-a(n-2)+a(n-3)-a(n-4) for n>3. - Wesley Ivan Hurt, Sep 19 2015
MAPLE
A135447 := proc(n) op((n mod 10)+1, [1, 2, 4, 8, 5, -1, -2, -4, -8, -5]) ; end: seq(A135447(n), n=0..150) ; # R. J. Mathar, Feb 07 2009
MATHEMATICA
PadRight[{}, 100, {1, 2, 4, 8, 5, -1, -2, -4, -8, -5}] (* Vincenzo Librandi, Sep 19 2015 *)
LinearRecurrence[{1, -1, 1, -1}, {1, 2, 4, 8}, 100] (* Harvey P. Dale, Jun 03 2023 *)
PROG
(PARI) a(n)=[1, 2, 4, 8, 5, -1, -2, -4, -8, -5][n%10+1] \\ Charles R Greathouse IV, Jun 02 2011
(Magma) &cat[[1, 2, 4, 8, 5, -1, -2, -4, -8, -5]: n in [0..10]]; // Vincenzo Librandi, Sep 19 2015
CROSSREFS
Sequence in context: A126215 A165617 A273170 * A163339 A364611 A092892
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Dec 14 2007
EXTENSIONS
More periods from R. J. Mathar, Feb 07 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 14:34 EDT 2024. Contains 372968 sequences. (Running on oeis4.)