|
|
A135448
|
|
Period 5: repeat [1, 5, 3, 4, -2].
|
|
1
|
|
|
1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1, 5, 3, 4, -2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) == 5*a(n-1) mod 11.
a(n) = (1/50)*{-19*(n mod 5)+71*((n+1) mod 5)+((n+2) mod 5)+31*((n+3) mod 5)-29*((n+4) mod 5)), with n>=0. - Paolo P. Lava, Dec 18 2007
a(n) = (11/5) - ((3+2*5^0.5)/5)*cos(2*Pi*n/5) - (1/10)*((20-4*5^0.5)^0.5 - 7*(20+4*5^0.5)^0.5)*sin(2*Pi*n/5)) - ((3-2*5^0.5)/5)*cos(4*Pi*n/5) + (1/10)*((20+4*5^0.5)^0.5 + 7*(20-4*5^0.5)^0.5)*sin(4*Pi*n/5).
G.f. = ((1 + 5*z + 3*z^2 + 4*z^3 - 2*z^4)/(1-z^5)). (End)
Equivalently, g.f. = (-1 - 5*x - 3*x^2 - 4*x^3 + 2*x^4)/((x-1)*(1 + x + x^2 + x^3 + x^4)). - R. J. Mathar, Jan 07 2008
a(n) = a(n-5) for n>4.
a(n) = (1-n-5*floor(-n/5)-floor((n-2)/5)+2*floor((n-3)/5)-floor[(n-4)/5)) * (-1)^(floor((n+1)/5)-floor(n/5)). (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy,less
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|