login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273168
Denominators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674).
3
1, 2, 2, 8, 2, 8, 16, 32, 16, 32, 128, 16, 32, 16, 128, 256, 256, 64, 512, 256, 512, 1024, 256, 2048, 512, 1024, 512, 2048, 2048, 8192, 4096, 8192, 2048, 8192, 4096, 8192, 32768, 2048, 4096, 2048, 8192, 2048, 4096, 2048, 32768, 65536, 65536, 8192, 32768, 16384, 32768, 8192, 131072, 65536, 131072, 262144, 65536, 262144, 32768, 65536, 32768, 524288, 131072, 262144, 131072, 524288
OFFSET
0,2
COMMENTS
The numerator sequence is given in A273167, where details are given.
FORMULA
a(n, m) = denominator(R(n, m)), n >= 0, m = 1, ..., n, with the rationals R(n, m) given by R(n, 0) = (1/2^(2*n-1)) * binomial(2*n,n)/2 and R(n ,m) = (1/2^(2*n-1))*binomial(2*n, n-m) for m =1..n, n >= 0.
EXAMPLE
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 7
0: 1
1: 2 2
2: 8 2 8
3: 16 32 16 32
4: 128 16 32 16 128
5: 256 256 64 512 256 512
6: 1024 256 2048 512 1024 512 2048
7: 2048 8192 4096 8192 2048 8192 4096 8192
...
row 8: 32768 2048 4096 2048 8192 2048 4096 2048 32768,
row 9: 65536 65536 8192 32768 16384 32768 8192 131072 65536 131072,
...
PROG
(PARI) a(n, m) = if (m == 0, denominator((1/2^(2*n-1)) * binomial(2*n, n)/2), denominator((1/2^(2*n-1))*binomial(2*n, n-m)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
CROSSREFS
Cf. A273167.
Sequence in context: A342818 A174354 A011147 * A098818 A092694 A098984
KEYWORD
nonn,tabl,frac,easy
AUTHOR
Wolfdieter Lang, Jun 12 2016
STATUS
approved