Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 23 2016 00:03:03
%S 1,2,2,8,2,8,16,32,16,32,128,16,32,16,128,256,256,64,512,256,512,1024,
%T 256,2048,512,1024,512,2048,2048,8192,4096,8192,2048,8192,4096,8192,
%U 32768,2048,4096,2048,8192,2048,4096,2048,32768,65536,65536,8192,32768,16384,32768,8192,131072,65536,131072,262144,65536,262144,32768,65536,32768,524288,131072,262144,131072,524288
%N Denominators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674).
%C The numerator sequence is given in A273167, where details are given.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F a(n, m) = denominator(R(n, m)), n >= 0, m = 1, ..., n, with the rationals R(n, m) given by R(n, 0) = (1/2^(2*n-1)) * binomial(2*n,n)/2 and R(n ,m) = (1/2^(2*n-1))*binomial(2*n, n-m) for m =1..n, n >= 0.
%e The triangle a(n, m) begins:
%e n\m 0 1 2 3 4 5 6 7
%e 0: 1
%e 1: 2 2
%e 2: 8 2 8
%e 3: 16 32 16 32
%e 4: 128 16 32 16 128
%e 5: 256 256 64 512 256 512
%e 6: 1024 256 2048 512 1024 512 2048
%e 7: 2048 8192 4096 8192 2048 8192 4096 8192
%e ...
%e row 8: 32768 2048 4096 2048 8192 2048 4096 2048 32768,
%e row 9: 65536 65536 8192 32768 16384 32768 8192 131072 65536 131072,
%e ...
%o (PARI) a(n, m) = if (m == 0, denominator((1/2^(2*n-1)) * binomial(2*n,n)/2), denominator((1/2^(2*n-1))*binomial(2*n, n-m)));
%o tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ _Michel Marcus_, Jun 19 2016
%Y Cf. A273167.
%K nonn,tabl,frac,easy
%O 0,2
%A _Wolfdieter Lang_, Jun 12 2016