OFFSET
1,1
COMMENTS
a(n) is the largest l such that there exists k with t(k) = t(k+n) = t(k+2*n) = ... = t(k+(l-1)*n), where t(n) = A010060(n).
LINKS
Ibai Aedo, Table of n, a(n) for n = 1..2048
Ibai Aedo, Uwe Grimm, Yasushi Nagai, and Petra Staynova, On long arithmetic progressions in binary Morse-like words, arXiv:2101.02056 [math.CO], 2021.
Ibai Aedo, Uwe Grimm, Yasushi Nagai, and Petra Staynova, Monochromatic Arithmetic Progressions in Binary Thue-Morse-Like Words, Theor. Comp. Sci. (2022).
Olga Parshina, On arithmetic index in the generalized Thue-Morse word, arXiv:1811.03884 [math.CO], 2018.
EXAMPLE
For n = 3, we have t(45) = t(48) = t(51) = t(54) = t(57) = t(60) = t(63) = t(66), and no k and m>8 exist such that t(k) = t(k+3) = t(k+2*3) = ... = t(k+(m-1)*3). So a(3)=8.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Mar 22 2021
STATUS
approved