login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342817 Power series expansion of AQM(1,1-8x) where AQM denotes the arithmetic-quadratic mean. 0
1, -4, 4, 16, 52, 112, -48, -1984, -11212, -33360, 6224, 713536, 4441872, 13004480, -17374656, -432012032, -2525831628, -6454496208, 21147389392, 326358047552, 1794285832464, 4124461926592, -19727734694848, -263598020446976, -1416694290412784, -3151402998261312 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generating function: AQM(1,1-8x) where AQM(u,v) (arithmetic-quadratic mean of u and v) is the fixed point obtained by iterating ((u+v)/2, sqrt((u^2+v^2)/2)) (we choose 1-8x in order to avoid denominators, as in A060691).

LINKS

Table of n, a(n) for n=0..25.

EXAMPLE

First steps of iteration of ((u+v)/2, sqrt((u^2+v^2)/2)) are (1, 1-8x), (1 - 4*x, 1 - 4*x + 8*x^2 + 32*x^3 + 96*x^4 + O(x^5)), then (1 - 4*x + 4*x^2 + 16*x^3 + 48*x^4 + O(x^5), 1 - 4*x + 4*x^2 + 16*x^3 + 56*x^4 + O(x^5)) and (1 - 4*x + 4*x^2 + 16*x^3 + 52*x^4 + O(x^5), 1 - 4*x + 4*x^2 + 16*x^3 + 52*x^4 + O(x^5)), so the first terms of this sequence are 1, -4, 4, 16, 52.

PROG

(Sage)

R.<x> = PowerSeriesRing(QQ, default_prec=50)

(a, b) = (1, 1-8*x)

for i in range(50):

    (a, b) = ((a+b)/2, sqrt((a^2+b^2)/2))

a.coefficients()

(PARI) seq(n)={my(p=1, q=1-8*x+O(x*x^n)); while(p!=q, my(t=p+q); q = sqrt((p^2 + q^2)/2); p=t/2); Vec(p)} \\ Andrew Howroyd, Mar 22 2021

CROSSREFS

Compare A060691 for the arithmetic-geometric mean.

Sequence in context: A223202 A298448 A222144 * A107382 A257622 A185567

Adjacent sequences:  A342814 A342815 A342816 * A342818 A342819 A342820

KEYWORD

sign

AUTHOR

David A. Madore, Mar 22 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 03:10 EDT 2021. Contains 348073 sequences. (Running on oeis4.)