login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223202
T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or vertical neighbor moves across a corresponding cube edge
7
1, 4, 4, 16, 48, 16, 64, 576, 576, 64, 256, 6912, 20992, 6912, 256, 1024, 82944, 765952, 765952, 82944, 1024, 4096, 995328, 27951104, 85327872, 27951104, 995328, 4096, 16384, 11943936, 1020002304, 9515827200, 9515827200, 1020002304, 11943936
OFFSET
1,2
COMMENTS
Table starts
....1......4.........16............64..............256................1024
....4.....48........576..........6912............82944..............995328
...16....576......20992........765952.........27951104..........1020002304
...64...6912.....765952......85327872.......9515827200.......1061444124672
..256..82944...27951104....9515827200....3249109204992....1110327429169152
.1024.995328.1020002304.1061444124672.1110327429169152.1163614255186968576
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 12*a(n-1)
k=3: a(n) = 40*a(n-1) -128*a(n-2)
k=4: a(n) = 144*a(n-1) -3840*a(n-2) +24576*a(n-3)
k=5: a(n) = 512*a(n-1) -66560*a(n-2) +3014656*a(n-3) -50331648*a(n-4) +268435456*a(n-5)
k=6: [order 7]
k=7: [order 13]
EXAMPLE
Some solutions for n=3 k=4
..0..2..4..2....0..1..5..4....0..3..4..2....0..2..0..4....0..2..0..3
..3..1..2..5....3..5..3..0....3..1..3..5....3..5..2..0....3..5..2..5
..0..3..1..2....0..2..0..2....0..3..5..4....1..3..5..2....1..2..1..2
Face neighbors:
0,5 -> 1 2 3 4
1,4 -> 0 2 3 5
2,3 -> 0 1 4 5
CROSSREFS
Column 1 is A000302(n-1)
Column 2 is 4*12^(k-1)
Sequence in context: A219398 A222104 A257613 * A298448 A222144 A342817
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 18 2013
STATUS
approved