%I #9 Mar 23 2021 04:51:31
%S 1,-4,4,16,52,112,-48,-1984,-11212,-33360,6224,713536,4441872,
%T 13004480,-17374656,-432012032,-2525831628,-6454496208,21147389392,
%U 326358047552,1794285832464,4124461926592,-19727734694848,-263598020446976,-1416694290412784,-3151402998261312
%N Power series expansion of AQM(1,1-8x) where AQM denotes the arithmetic-quadratic mean.
%C Generating function: AQM(1,1-8x) where AQM(u,v) (arithmetic-quadratic mean of u and v) is the fixed point obtained by iterating ((u+v)/2, sqrt((u^2+v^2)/2)) (we choose 1-8x in order to avoid denominators, as in A060691).
%e First steps of iteration of ((u+v)/2, sqrt((u^2+v^2)/2)) are (1, 1-8x), (1 - 4*x, 1 - 4*x + 8*x^2 + 32*x^3 + 96*x^4 + O(x^5)), then (1 - 4*x + 4*x^2 + 16*x^3 + 48*x^4 + O(x^5), 1 - 4*x + 4*x^2 + 16*x^3 + 56*x^4 + O(x^5)) and (1 - 4*x + 4*x^2 + 16*x^3 + 52*x^4 + O(x^5), 1 - 4*x + 4*x^2 + 16*x^3 + 52*x^4 + O(x^5)), so the first terms of this sequence are 1, -4, 4, 16, 52.
%o (Sage)
%o R.<x> = PowerSeriesRing(QQ, default_prec=50)
%o (a,b) = (1,1-8*x)
%o for i in range(50):
%o (a,b) = ((a+b)/2, sqrt((a^2+b^2)/2))
%o a.coefficients()
%o (PARI) seq(n)={my(p=1, q=1-8*x+O(x*x^n)); while(p!=q, my(t=p+q); q = sqrt((p^2 + q^2)/2); p=t/2); Vec(p)} \\ _Andrew Howroyd_, Mar 22 2021
%Y Compare A060691 for the arithmetic-geometric mean.
%K sign
%O 0,2
%A _David A. Madore_, Mar 22 2021