|
|
A195522
|
|
T(n,k) = Number of lower triangles of an n X n -k..k array with all row and column sums zero.
|
|
12
|
|
|
1, 1, 1, 1, 1, 3, 1, 1, 5, 15, 1, 1, 7, 65, 199, 1, 1, 9, 175, 3753, 6247, 1, 1, 11, 369, 27267, 860017, 505623, 1, 1, 13, 671, 121367, 23663523, 839301197, 105997283, 1, 1, 15, 1105, 401565, 286168923, 122092290831, 3535646416019, 58923059879, 1, 1, 17
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
COMMENTS
|
Table starts
....1......1........1.........1..........1...........1...........1.......1....1
....1......1........1.........1..........1...........1...........1.......1....1
....3......5........7.........9.........11..........13..........15......17...19
...15.....65......175.......369........671........1105........1695....2465.3439
..199...3753....27267....121367.....401565.....1089411.....2563933.5423365
.6247.860017.23663523.286168923.2106810049.11131321791.46387885537
|
|
LINKS
|
|
|
FORMULA
|
Empirical for rows:
T(2,k) = 1
T(3,k) = 2*k + 1
T(4,k) = 4*k^3 + 6*k^2 + 4*k + 1
T(5,k) = (643/45)*k^6 + (643/15)*k^5 + (2165/36)*k^4 + (293/6)*k^3 + (4423/180)*k^2 + (73/10)*k + 1
T(6,k) = (7389349/90720)*k^10 + (7389349/18144)*k^9 + (836251/864)*k^8 + (4318165/3024)*k^7 + (6254923/4320)*k^6 + (4563293/4320)*k^5 + (10247161/18144)*k^4 + (249983/1134)*k^3 + (21959/360)*k^2 + (3469/315)*k + 1
|
|
EXAMPLE
|
Some solutions for n=5 k=6
..0..........0..........0..........0..........0..........0..........0
..0.0.......-2.2........6-6.......-1.1........5-5.......-4.4.......-4.4
.-1.3-2.....-6.0.6.....-6.6.0.....-1.5-4.....-6.4.2......3-6.3.....-4.1.3
..6-3-2-1....4-4-4.4....5.3-5-3....0-5.3.2....0.4-3-1...-5.5.1-1....5-2-4.1
.-5.0.4.1.0..4.2-2-4.0.-5-3.5.3.0..2-1.1-2.0..1-3.1.1.0..6-3-4.1.0..3-3.1-1.0
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|