login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273020
a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)).
2
1, 1, 3, 5, 19, 39, 141, 321, 1107, 2675, 8953, 22483, 73789, 190345, 616227, 1621413, 5196627, 13882947, 44152809, 119385663, 377379369, 1030434069, 3241135527, 8921880135, 27948336381, 77459553549, 241813226151, 674100041501, 2098240353907, 5878674505303, 18252025766941
OFFSET
0,3
LINKS
FORMULA
a(n) = JacobiP(n, 1, -n-3/2, -7)/(n+1) + GegenbauerC(n-1, -n, -1/2), with a(0) = 1.
a(n) = hypergeom([-n,1/2], [2], 4) + n*hypergeom([-n/2+1,-n/2+1/2], [2], 4).
a(n) = (-1)^n*A005043(n) + A005717(n).
a(2*n) = A082758(n).
a(2*n+1) = A273019(n).
MAPLE
seq(simplify(hypergeom([-n, 1/2], [2], 4) + n*hypergeom([-n/2+1, -n/2+1/2], [2], 4)), n=0..30);
MATHEMATICA
Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1, -n, -1/2], {n, 0, 30} ]
PROG
(Sage)
def A():
a, b, c, d, n = 0, 1, 1, -1, 1
yield 1
while True:
yield d + b*(1-(-1)^n)
n += 1
a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
A273020 = A()
print([next(A273020) for _ in range(31)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 13 2016
STATUS
approved