Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 01 2020 07:45:28
%S 1,1,3,5,19,39,141,321,1107,2675,8953,22483,73789,190345,616227,
%T 1621413,5196627,13882947,44152809,119385663,377379369,1030434069,
%U 3241135527,8921880135,27948336381,77459553549,241813226151,674100041501,2098240353907,5878674505303,18252025766941
%N a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)).
%H A. Bostan and M. Kauers, <a href="http://arxiv.org/abs/0811.2899">Automatic Classification of Restricted Lattice Walks</a>, arXiv:0811.2899 (2008).
%F a(n) = JacobiP(n, 1, -n-3/2, -7)/(n+1) + GegenbauerC(n-1, -n, -1/2), with a(0) = 1.
%F a(n) = hypergeom([-n,1/2], [2], 4) + n*hypergeom([-n/2+1,-n/2+1/2], [2], 4).
%F a(n) = (-1)^n*A005043(n) + A005717(n).
%F a(2*n) = A082758(n).
%F a(2*n+1) = A273019(n).
%p seq(simplify(hypergeom([-n,1/2],[2],4) + n*hypergeom([-n/2+1,-n/2+1/2],[2],4)), n=0..30);
%t Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1,-n,-1/2], {n,0,30} ]
%o (Sage)
%o def A():
%o a, b, c, d, n = 0, 1, 1, -1, 1
%o yield 1
%o while True:
%o yield d + b*(1-(-1)^n)
%o n += 1
%o a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
%o c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
%o A273020 = A()
%o print([next(A273020) for _ in range(31)])
%Y Cf. A005043, A005717, A082758, A273019.
%K nonn
%O 0,3
%A _Peter Luschny_, May 13 2016