login
A273017
Decimal expansion of the first moment of the reciprocal gamma distribution.
1
1, 9, 3, 4, 5, 6, 7, 0, 4, 2, 1, 4, 7, 8, 8, 4, 7, 2, 1, 1, 8, 3, 7, 1, 4, 7, 0, 4, 3, 6, 9, 1, 7, 8, 9, 2, 4, 3, 8, 2, 1, 7, 5, 5, 9, 2, 2, 6, 6, 5, 8, 8, 4, 8, 3, 8, 5, 5, 4, 4, 7, 5, 4, 2, 2, 5, 9, 5, 4, 4, 0, 8, 7, 4, 7, 1, 0, 1, 8, 2, 4, 7, 2, 2, 5, 4, 4, 5, 0, 0, 3, 8, 3, 4, 8, 2, 1, 0, 1, 7
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson constant, p. 262.
LINKS
FORMULA
(1/I)*Integral_{x>=0} x/gamma(x) dx where I = Integral_{x>=0} 1/gamma(x) dx is the Fransén-Robinson constant.
EXAMPLE
1.93456704214788472118371470436917892438217559226658848385544754...
MATHEMATICA
digits = 100;
I0 = NIntegrate[1/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
M1 = (1/I0) NIntegrate[x/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
RealDigits[M1, 10, digits][[1]]
PROG
(PARI) default(realprecision, 120); intnum(x=0, [[1], 1], x/gamma(x))/intnum(x=0, [[1], 1], 1/gamma(x)) \\ Vaclav Kotesovec, May 14 2016
CROSSREFS
Cf. A058655.
Sequence in context: A011011 A236100 A070634 * A222233 A021111 A242302
KEYWORD
nonn,cons
AUTHOR
STATUS
approved