login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273017
Decimal expansion of the first moment of the reciprocal gamma distribution.
1
1, 9, 3, 4, 5, 6, 7, 0, 4, 2, 1, 4, 7, 8, 8, 4, 7, 2, 1, 1, 8, 3, 7, 1, 4, 7, 0, 4, 3, 6, 9, 1, 7, 8, 9, 2, 4, 3, 8, 2, 1, 7, 5, 5, 9, 2, 2, 6, 6, 5, 8, 8, 4, 8, 3, 8, 5, 5, 4, 4, 7, 5, 4, 2, 2, 5, 9, 5, 4, 4, 0, 8, 7, 4, 7, 1, 0, 1, 8, 2, 4, 7, 2, 2, 5, 4, 4, 5, 0, 0, 3, 8, 3, 4, 8, 2, 1, 0, 1, 7
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson constant, p. 262.
LINKS
FORMULA
(1/I)*Integral_{x>=0} x/gamma(x) dx where I = Integral_{x>=0} 1/gamma(x) dx is the Fransén-Robinson constant.
EXAMPLE
1.93456704214788472118371470436917892438217559226658848385544754...
MATHEMATICA
digits = 100;
I0 = NIntegrate[1/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
M1 = (1/I0) NIntegrate[x/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
RealDigits[M1, 10, digits][[1]]
PROG
(PARI) default(realprecision, 120); intnum(x=0, [[1], 1], x/gamma(x))/intnum(x=0, [[1], 1], 1/gamma(x)) \\ Vaclav Kotesovec, May 14 2016
CROSSREFS
Cf. A058655.
Sequence in context: A011011 A236100 A070634 * A222233 A021111 A242302
KEYWORD
nonn,cons
AUTHOR
STATUS
approved