login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the first moment of the reciprocal gamma distribution.
1

%I #19 Mar 08 2023 05:15:18

%S 1,9,3,4,5,6,7,0,4,2,1,4,7,8,8,4,7,2,1,1,8,3,7,1,4,7,0,4,3,6,9,1,7,8,

%T 9,2,4,3,8,2,1,7,5,5,9,2,2,6,6,5,8,8,4,8,3,8,5,5,4,4,7,5,4,2,2,5,9,5,

%U 4,4,0,8,7,4,7,1,0,1,8,2,4,7,2,2,5,4,4,5,0,0,3,8,3,4,8,2,1,0,1,7

%N Decimal expansion of the first moment of the reciprocal gamma distribution.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson constant, p. 262.

%H Steven R. Finch <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a> p. 35.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fransen-RobinsonConstant.html">Fransén-Robinson Constant</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Reciprocal_gamma_function">Reciprocal gamma function</a>

%F (1/I)*Integral_{x>=0} x/gamma(x) dx where I = Integral_{x>=0} 1/gamma(x) dx is the Fransén-Robinson constant.

%e 1.93456704214788472118371470436917892438217559226658848385544754...

%t digits = 100;

%t I0 = NIntegrate[1/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];

%t M1 = (1/I0) NIntegrate[x/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];

%t RealDigits[M1, 10, digits][[1]]

%o (PARI) default(realprecision, 120); intnum(x=0, [[1], 1], x/gamma(x))/intnum(x=0, [[1], 1], 1/gamma(x)) \\ _Vaclav Kotesovec_, May 14 2016

%Y Cf. A058655.

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, May 13 2016