login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273019
a(n) = hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4).
2
1, 5, 39, 321, 2675, 22483, 190345, 1621413, 13882947, 119385663, 1030434069, 8921880135, 77459553549, 674100041501, 5878674505303, 51361306358401, 449476337521875, 3939287035681807, 34570459724919253, 303749080936528883, 2671775251987354377, 23524418982229636185
OFFSET
0,2
FORMULA
Conjecture: +(241*n+56) *(2*n+1) *(n+1)*a(n) +(482*n^3-25561*n^2+13831*n-56) *a(n-1) +(-48682*n^3+225897*n^2-300131*n+125310) *a(n-2) +9*(n-2) *(2651*n-3183) *(2*n-3) *a(n-3)=0. - R. J. Mathar, May 16 2016
Recurrence (of order 2): (n+1)*(2*n + 1)*(12*n^2 - 19*n + 9)*a(n) = (240*n^4 - 140*n^3 - 42*n^2 - 7*n + 9)*a(n-1) - 9*(n-1)*(2*n - 1)*(12*n^2 + 5*n + 2)*a(n-2). - Vaclav Kotesovec, Jul 05 2018
a(n) ~ 3^(2*n + 3/2) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 05 2018
MAPLE
a := n -> hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4): seq(simplify(a(n)), n=0..22);
MATHEMATICA
Table[HypergeometricPFQ[{-2*n-1, 1/2}, {2}, 4] + (2*n+1)*HypergeometricPFQ[ {-n+1/2, -n}, {2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)
PROG
def A():
a, b, c, d, n = 0, 1, 1, -1, 1
while True:
if n%2: yield d + b*(1-(-1)^n)
n += 1
a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
A273019 = A()
print([A273019.next() for _ in range(22)])
CROSSREFS
Bisection of A273020.
Cf. A082758.
Sequence in context: A135849 A105426 A356622 * A244039 A328554 A213233
KEYWORD
nonn
AUTHOR
Peter Luschny, May 13 2016
STATUS
approved