OFFSET
0,2
FORMULA
Conjecture: +(241*n+56) *(2*n+1) *(n+1)*a(n) +(482*n^3-25561*n^2+13831*n-56) *a(n-1) +(-48682*n^3+225897*n^2-300131*n+125310) *a(n-2) +9*(n-2) *(2651*n-3183) *(2*n-3) *a(n-3)=0. - R. J. Mathar, May 16 2016
Recurrence (of order 2): (n+1)*(2*n + 1)*(12*n^2 - 19*n + 9)*a(n) = (240*n^4 - 140*n^3 - 42*n^2 - 7*n + 9)*a(n-1) - 9*(n-1)*(2*n - 1)*(12*n^2 + 5*n + 2)*a(n-2). - Vaclav Kotesovec, Jul 05 2018
a(n) ~ 3^(2*n + 3/2) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 05 2018
MAPLE
a := n -> hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4): seq(simplify(a(n)), n=0..22);
MATHEMATICA
Table[HypergeometricPFQ[{-2*n-1, 1/2}, {2}, 4] + (2*n+1)*HypergeometricPFQ[ {-n+1/2, -n}, {2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 13 2016
STATUS
approved