login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4).
2

%I #15 Mar 15 2020 17:36:37

%S 1,5,39,321,2675,22483,190345,1621413,13882947,119385663,1030434069,

%T 8921880135,77459553549,674100041501,5878674505303,51361306358401,

%U 449476337521875,3939287035681807,34570459724919253,303749080936528883,2671775251987354377,23524418982229636185

%N a(n) = hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4).

%F Conjecture: +(241*n+56) *(2*n+1) *(n+1)*a(n) +(482*n^3-25561*n^2+13831*n-56) *a(n-1) +(-48682*n^3+225897*n^2-300131*n+125310) *a(n-2) +9*(n-2) *(2651*n-3183) *(2*n-3) *a(n-3)=0. - _R. J. Mathar_, May 16 2016

%F Recurrence (of order 2): (n+1)*(2*n + 1)*(12*n^2 - 19*n + 9)*a(n) = (240*n^4 - 140*n^3 - 42*n^2 - 7*n + 9)*a(n-1) - 9*(n-1)*(2*n - 1)*(12*n^2 + 5*n + 2)*a(n-2). - _Vaclav Kotesovec_, Jul 05 2018

%F a(n) ~ 3^(2*n + 3/2) / (2^(3/2) * sqrt(Pi*n)). - _Vaclav Kotesovec_, Jul 05 2018

%p a := n -> hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4): seq(simplify(a(n)), n=0..22);

%t Table[HypergeometricPFQ[{-2*n-1, 1/2}, {2}, 4] + (2*n+1)*HypergeometricPFQ[ {-n+1/2, -n}, {2}, 4], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 05 2018 *)

%o def A():

%o a, b, c, d, n = 0, 1, 1, -1, 1

%o while True:

%o if n%2: yield d + b*(1-(-1)^n)

%o n += 1

%o a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))

%o c, d = d, (3*(n-1)*c-(2*n-1)*d)//n

%o A273019 = A()

%o print([A273019.next() for _ in range(22)])

%Y Bisection of A273020.

%Y Cf. A082758.

%K nonn

%O 0,2

%A _Peter Luschny_, May 13 2016