login
A356622
Number of ways to tile a hexagonal strip made up of 4*n equilateral triangles, using triangles and diamonds.
3
1, 5, 39, 317, 2585, 21085, 171987, 1402873, 11443033, 93339173, 761354199, 6210256613, 50656169297, 413195081581, 3370372805763, 27491645850097, 224245398092113, 1829137434684101, 14920010771362215
OFFSET
0,2
COMMENTS
Here is the hexagonal strip:
________________ ____
/\ /\ /\ /\ / \ /
/__\/__\/__\/__\/ ... \/
\ /\ /\ /\ /\ /\
\/__\/__\/__\/__\ /__\
The two types of tiles are triangles and diamonds (each of which can be rotated). Here are the two types of tiles:
____ ____
\ / \ \
\/ and \___\.
FORMULA
a(n) = A355327(2*n).
a(n) = 9*a(n-1) - 7*a(n-2) + a(n-3).
G.f.: (1 - 4 x + x^2)/(1 - 9 x + 7 x^2 - x^3).
EXAMPLE
For n=4, here is one of the a(4)=2585 ways to tile this strip (of 16 triangles) using triangles and diamonds.
________________
/ /\ /\ / /
/__ / \/__\/__ /
\ /\ /\ \ /\
\/__\/__\___\/__\
MATHEMATICA
LinearRecurrence[{9, -7, 1}, {1, 5, 39}, 40]
CROSSREFS
Bisection of A355327. Cf. A356623.
Sequence in context: A201442 A135849 A105426 * A273019 A244039 A328554
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Aarnav Gogri, Aug 16 2022
STATUS
approved