login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128027 Numbers n such that (11^n - 3^n)/8 is prime. 33
3, 5, 19, 31, 367, 389, 431, 2179, 10667, 13103, 90397 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms are primes.

No other terms < 10^5.

LINKS

Table of n, a(n) for n=1..11.

MAPLE

A128027:=n->`if`(isprime((11^n-3^n)/8), n, NULL): seq(A128027(n), n=1..1000); # Wesley Ivan Hurt, Nov 19 2014

MATHEMATICA

k=8; Select[ Prime[ Range[1, 200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]

Do[If[PrimeQ[(11^n - 3^n)/8], Print[n]], {n, 10^4}] (* Ryan Propper, Mar 17 2007 *)

Select[Prime[Range[1200]], PrimeQ[(11^# - 3^#)/8] &] (* Vincenzo Librandi, Nov 20 2014 *)

PROG

(MAGMA) [p: p in PrimesUpTo(400) | IsPrime((11^p-3^p) div 8)]; // Vincenzo Librandi, Nov 20 2014

(PARI) is(n)=ispseudoprime((11^n - 3^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

CROSSREFS

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime. Cf. A057468 = numbers n such that 3^n - 2^n is prime. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128025, A128026, A128028, A128029, A128030, A128031, A128032.

Sequence in context: A068990 A228471 A062594 * A128066 A273020 A148523

Adjacent sequences:  A128024 A128025 A128026 * A128028 A128029 A128030

KEYWORD

hard,more,nonn

AUTHOR

Alexander Adamchuk, Feb 11 2007

EXTENSIONS

a(8) from Ryan Propper, Mar 17 2007

a(9) from Farideh Firoozbakht, Apr 04 2007

a(10)=13103, a(11)=90397 from Robert Price, Apr 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 19:44 EDT 2019. Contains 323597 sequences. (Running on oeis4.)