login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270434
a(n) = A270432(n) - A270433(n).
6
1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 6, 7, 6, 5, 6, 5, 4, 3, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 10, 11, 12, 13, 14, 13, 12, 11, 10, 9, 10, 11, 12, 11, 12, 13, 12, 11, 10, 9, 10, 9, 8, 7, 8, 7, 8, 9, 8, 7, 8, 9, 8, 7, 6, 5, 6, 7, 6, 7, 6, 5, 6, 7, 8, 7, 6, 7, 6, 5, 4, 3, 4, 3, 2, 3, 2, 1, 0, 1, 2
OFFSET
1,2
COMMENTS
The first negative term occurs at a(223) = -1.
After a(2457) = -1 the sequence dips next time to the negative side at n=218351.
No other negative terms after a(2346395) = -1 in range 1 .. 2^25.
In range 1..(2^25) the maximum value is a(23963418) = 8326 and there are 1252224 negative terms in that range (less than 4%).
LINKS
FORMULA
a(n) = A270432(n) - A270433(n).
MATHEMATICA
nn = 200; f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; s = Select[Range@ nn, Xor[EvenQ@ f@ #, OddQ@ g@ #] &]; t = Select[Range@ nn, Xor[EvenQ@ f@ #, EvenQ@ g@ #] &]; Table[Count[s, k_ /; k <= n] - Count[t, k_ /; k <= n], {n, nn/2}] (* Michael De Vlieger, Mar 17 2016 *)
PROG
(PARI)
default(primelimit, 2^30);
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A048673(n) = (A003961(n)+1)/2;
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A064216(n) = A064989((2*n)-1);
t=0; for(n=1, 2^25, if(!((A048673(n)+A064216(n))%2), t++, t--); write("b270434.txt", n, " ", t));
(Scheme) (define (A270434 n) (- (A270432 n) (A270433 n)))
CROSSREFS
Cf. A270435 (positions of zeros).
Cf. also A038698, A269364.
Sequence in context: A017860 A328765 A368822 * A204982 A017850 A305901
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 17 2016
STATUS
approved