Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 20 2016 12:56:54
%S 1,2,3,4,5,4,3,4,5,6,5,6,7,6,5,6,7,6,5,6,5,4,3,2,3,4,5,4,5,6,7,8,9,10,
%T 9,10,11,10,11,12,13,14,13,12,11,10,9,10,11,12,11,12,13,12,11,10,9,10,
%U 9,8,7,8,7,8,9,8,7,8,9,8,7,6,5,6,7,6,7,6,5,6,7,8,7,6,7,6,5,4,3,4,3,2,3,2,1,0,1,2
%N a(n) = A270432(n) - A270433(n).
%C The first negative term occurs at a(223) = -1.
%C After a(2457) = -1 the sequence dips next time to the negative side at n=218351.
%C No other negative terms after a(2346395) = -1 in range 1 .. 2^25.
%C In range 1..(2^25) the maximum value is a(23963418) = 8326 and there are 1252224 negative terms in that range (less than 4%).
%H Antti Karttunen, <a href="/A270434/b270434.txt">Table of n, a(n) for n = 1..35000</a>
%F a(n) = A270432(n) - A270433(n).
%t nn = 200; f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; s = Select[Range@ nn, Xor[EvenQ@ f@ #, OddQ@ g@ #] &]; t = Select[Range@ nn, Xor[EvenQ@ f@ #, EvenQ@ g@ #] &]; Table[Count[s, k_ /; k <= n] - Count[t, k_ /; k <= n], {n, nn/2}] (* _Michael De Vlieger_, Mar 17 2016 *)
%o (PARI)
%o default(primelimit, 2^30);
%o A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From _Michel Marcus_
%o A048673(n) = (A003961(n)+1)/2;
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A064216(n) = A064989((2*n)-1);
%o t=0; for(n=1,2^25,if(!((A048673(n)+A064216(n))%2),t++,t--);write("b270434.txt", n, " ", t));
%o (Scheme) (define (A270434 n) (- (A270432 n) (A270433 n)))
%Y Cf. A270430, A270431, A270432, A270433.
%Y Cf. A270435 (positions of zeros).
%Y Cf. also A038698, A269364.
%K sign
%O 1,2
%A _Antti Karttunen_, Mar 17 2016