login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204982
Least k such that n divides k!! - j!! for some j satisfying 1 <= j < k.
9
2, 3, 4, 5, 4, 4, 4, 6, 6, 6, 6, 5, 5, 5, 6, 8, 7, 7, 7, 6, 8, 12, 6, 8, 10, 7, 10, 8, 14, 7, 8, 10, 6, 7, 9, 10, 12, 10, 9, 6, 8, 8, 15, 12, 6, 6, 6, 8, 11, 11, 7, 7, 17, 10, 12, 8, 7, 16, 9, 9
OFFSET
1,1
COMMENTS
See A204892 for a discussion and guide to related sequences.
EXAMPLE
Example 1. Using 1!! = 1, 2!! = 2, 3!! = 3, 4!! = 8, we verify that a(5) = 5 as follows: The values of 4!!-j!! for j = 1,2,3 are 7,6,5, respectively, so 5 divides 4!! - 3!!, and so for k = 4 there is a number j as required. On the other hand, it is easy to check that for k = 1,2,3, there is no such j.
Example 2. To see that a(6) = 4, we already noted that 6 divides 4!!-2!! in Example 1, and it is easy to check that for k = 1,2,3, the number 6 does not divide k!! - j!! for any j satisfying 1 <=j < k.
MATHEMATICA
s[n_] := s[n] = n!!; z1 = 400; z2 = 60;
Table[s[n], {n, 1, 30}] (* A006882 *)
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204912 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
Table[d[n], {n, 1, z2}] (* A204913 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
Table[k[n], {n, 1, z2}] (* A204982 *)
Table[j[n], {n, 1, z2}] (* A205100 *)
Table[s[k[n]], {n, 1, z2}] (* A205101 *)
Table[s[j[n]], {n, 1, z2}] (* A205102 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205103 *)
Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205104 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 22 2012
EXTENSIONS
Edited by Clark Kimberling, Apr 15 2020
STATUS
approved