login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017860
Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11).
1
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 4, 3, 3, 4, 6, 10, 15, 18, 19, 19, 19, 20, 26, 38, 53, 68, 81, 90, 95, 103, 122, 156, 205, 266, 330, 387, 437, 491, 566, 681, 852, 1079, 1344, 1625, 1911, 2211, 2562
OFFSET
0,16
COMMENTS
Number of compositions of n into parts p where 7 <= p <= 11. [Joerg Arndt, Jun 28 2013]
LINKS
FORMULA
a(n) = a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) for n>10. - Vincenzo Librandi, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[7, 11]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 28 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}, 60] (* Harvey P. Dale, Jun 03 2023 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^7-x^8-x^9-x^10-x^11))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]; [n le 11 select I[n] else Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11): n in [1..70]]; // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A271800 A073792 A017870 * A328765 A368822 A270434
KEYWORD
nonn,easy
AUTHOR
STATUS
approved