login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268350
Primes p where q = p + 4 is also prime and rad((p+1)(p+2)(p+3)) < pq, where rad(k) is the largest squarefree number dividing k.
1
7, 13, 79, 97, 223, 349, 673, 1087, 1213, 1663, 3697, 13309, 13687, 16927, 20479, 21139, 25999, 32797, 33613, 78649, 122449, 151549, 263167, 401407, 651247, 1058749, 1656247, 1893373, 2060449, 2146687, 3058873, 3276799, 3733207, 3866623, 3880897, 4070197
OFFSET
1,1
COMMENTS
Are there any consecutive primes p and q for which rad((p+1)(p+2)...(q-1)) < pq with q - p > 4?
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..299
EXAMPLE
79 and 83 are prime, and rad(80*81*82) = rad(2^5*3^4*5*41) = 2*3*5*41 = 1230 < 6557 = 79*83, so 79 is a member of this sequence.
MAPLE
rad:= n -> convert(numtheory:-factorset(n), `*`):
select(p -> isprime(p) and isprime(p+4) and rad((p+1)*(p+2)*(p+3)) < p*(p+4), [seq(i, i=7..10^7, 6)]); # Robert Israel, Feb 05 2016
MATHEMATICA
p4Q[n_]:=PrimeQ[n+4]&&Select[Divisors[Times@@(n+{1, 2, 3})], SquareFreeQ][[-1]]<(n(n+4)); Select[Prime[Range[300000]], p4Q] (* Harvey P. Dale, Jul 25 2020 *)
PROG
(PARI) rad(n)=factorback(factor(n)[, 1])
has(p, q)=if(q-p!=4, return(0)); my(t=rad((p+1)/2)*rad((p+3)/2), pq=p*q); 3*t<pq && rad(p+2)*t<pq
p=2; forprime(q=3, 1e10, if(has(p, q), print1(p", ")); p=q)
CROSSREFS
Subsequence of A029710.
Sequence in context: A174878 A177198 A177163 * A061521 A362246 A073220
KEYWORD
nonn
AUTHOR
STATUS
approved