The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268350 Primes p where q = p + 4 is also prime and rad((p+1)(p+2)(p+3)) < pq, where rad(k) is the largest squarefree number dividing k. 1
 7, 13, 79, 97, 223, 349, 673, 1087, 1213, 1663, 3697, 13309, 13687, 16927, 20479, 21139, 25999, 32797, 33613, 78649, 122449, 151549, 263167, 401407, 651247, 1058749, 1656247, 1893373, 2060449, 2146687, 3058873, 3276799, 3733207, 3866623, 3880897, 4070197 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Are there any consecutive primes p and q for which rad((p+1)(p+2)...(q-1)) < pq with q - p > 4? LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..299 EXAMPLE 79 and 83 are prime, and rad(80*81*82) = rad(2^5*3^4*5*41) = 2*3*5*41 = 1230 < 6557 = 79*83, so 79 is a member of this sequence. MAPLE rad:= n -> convert(numtheory:-factorset(n), `*`): select(p -> isprime(p) and isprime(p+4) and rad((p+1)*(p+2)*(p+3)) < p*(p+4), [seq(i, i=7..10^7, 6)]); # Robert Israel, Feb 05 2016 MATHEMATICA p4Q[n_]:=PrimeQ[n+4]&&Select[Divisors[Times@@(n+{1, 2, 3})], SquareFreeQ][[-1]]<(n(n+4)); Select[Prime[Range[300000]], p4Q] (* Harvey P. Dale, Jul 25 2020 *) PROG (PARI) rad(n)=factorback(factor(n)[, 1]) has(p, q)=if(q-p!=4, return(0)); my(t=rad((p+1)/2)*rad((p+3)/2), pq=p*q); 3*t

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 21:21 EST 2022. Contains 350668 sequences. (Running on oeis4.)