login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268349 Expansion of (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4). 1
1, 2, 3, 4, 20, 45, 109, 275, 708, 1765, 4442, 11196, 28207, 70985, 178755, 450130, 1133423, 2853888, 7186144, 18094709, 45562353, 114725755, 288879164, 727396569, 1831581574, 4611915224, 11612784735, 29240946181, 73628587619, 185396495082 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, the ordinary generating function for the recurrence relation b(n) = b(n - 1) + 2*b(n - 2) + 3*b(n - 3) + 4*b(n - 4) + ... + k*b(n - k), with n > k - 1 and initial values b(i-1) = i for i = 1..k, is (Sum_{m = 0..(k - 1)} (-m^3 - 3*m^2 + 4*m + 6)*x^m/6)/(1 - Sum_{m = 1..k} m*x^m).

LINKS

Table of n, a(n) for n=0..29.

Index entries for linear recurrences with constant coefficients, signature (1,2,3,4).

FORMULA

G.f.: (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).

MATHEMATICA

LinearRecurrence[{1, 2, 3, 4}, {1, 2, 3, 4}, 30]

CoefficientList[Series[(1 + x - x^2 - 6 x^3) / (1 - x - 2 x^2 - 3 x^3 - 4 x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)

PROG

(PARI) Vec((1+x-x^2-6*x^3)/(1-x-2*x^2-3*x^3-4*x^4) + O(x^40)) \\ Michel Marcus, Feb 02 2016

(MAGMA) [n le 4 select n else Self(n-1)+2*Self(n-2)+3*Self(n-3)+4*Self(n-4): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016

CROSSREFS

Cf. A115451, A111586.

Sequence in context: A024632 A012578 A012573 * A107241 A012576 A012579

Adjacent sequences:  A268346 A268347 A268348 * A268350 A268351 A268352

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Feb 02 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 07:50 EST 2018. Contains 299599 sequences. (Running on oeis4.)