login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268349
Expansion of (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).
1
1, 2, 3, 4, 20, 45, 109, 275, 708, 1765, 4442, 11196, 28207, 70985, 178755, 450130, 1133423, 2853888, 7186144, 18094709, 45562353, 114725755, 288879164, 727396569, 1831581574, 4611915224, 11612784735, 29240946181, 73628587619, 185396495082
OFFSET
0,2
COMMENTS
In general, the ordinary generating function for the recurrence relation b(n) = b(n - 1) + 2*b(n - 2) + 3*b(n - 3) + 4*b(n - 4) + ... + k*b(n - k), with n > k - 1 and initial values b(i-1) = i for i = 1..k, is (Sum_{m = 0..(k - 1)} (-m^3 - 3*m^2 + 4*m + 6)*x^m/6)/(1 - Sum_{m = 1..k} m*x^m).
FORMULA
G.f.: (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).
MATHEMATICA
LinearRecurrence[{1, 2, 3, 4}, {1, 2, 3, 4}, 30]
CoefficientList[Series[(1 + x - x^2 - 6 x^3) / (1 - x - 2 x^2 - 3 x^3 - 4 x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
PROG
(PARI) Vec((1+x-x^2-6*x^3)/(1-x-2*x^2-3*x^3-4*x^4) + O(x^40)) \\ Michel Marcus, Feb 02 2016
(Magma) [n le 4 select n else Self(n-1)+2*Self(n-2)+3*Self(n-3)+4*Self(n-4): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
CROSSREFS
Sequence in context: A309789 A012578 A012573 * A333690 A107241 A012576
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 02 2016
STATUS
approved