login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268351
a(n) = 3*n*(9*n - 1)/2.
3
0, 12, 51, 117, 210, 330, 477, 651, 852, 1080, 1335, 1617, 1926, 2262, 2625, 3015, 3432, 3876, 4347, 4845, 5370, 5922, 6501, 7107, 7740, 8400, 9087, 9801, 10542, 11310, 12105, 12927, 13776, 14652, 15555, 16485, 17442, 18426, 19437, 20475, 21540, 22632, 23751, 24897, 26070, 27270
OFFSET
0,2
COMMENTS
First trisection of pentagonal numbers (A000326).
More generally, the ordinary generating function for the first trisection of k-gonal numbers is 3*x*(k - 1 + (2*k - 5)*x)/(1 - x)^3.
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
FORMULA
G.f.: 3*x*(4 + 5*x)/(1 - x)^3.
a(n) = binomial(9*n,2)/3.
a(n) = A000326(3*n) = 3*A022266(n).
a(n) = A211538(6*n+2).
a(n) = A001318(6*n-1), with A001318(-1)=0.
a(n) = A188623(9*n-2), with A188623(-2)=0.
Sum_{n>=1} 1/a(n) = 0.132848490245209886617568... = (-Pi*cot(Pi/9) + 5*log(3) + 4*cos(Pi/9)*log(cos(Pi/18)) - 4*cos(2*Pi/9)*log(sin(Pi/9)) - 4*log(sin(2*Pi/9))*sin(Pi/18))/3. [Corrected by Vaclav Kotesovec, Feb 25 2016]
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 3*exp(x)*x*(8 + 9*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = A022284(n) - n. (End)
MATHEMATICA
Table[3 n (9 n - 1)/2, {n, 0, 45}]
Table[Binomial[9 n, 2]/3, {n, 0, 45}]
LinearRecurrence[{3, -3, 1}, {0, 12, 51}, 45]
PROG
(Magma) [3*n*(9*n-1)/2: n in [0..50]]; // Vincenzo Librandi, Feb 04 2016
(PARI) a(n)=3*n*(9*n-1)/2 \\ Charles R Greathouse IV, Jul 26 2016
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 02 2016
EXTENSIONS
Edited by Bruno Berselli, Feb 03 2016
STATUS
approved