Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Dec 28 2024 10:18:50
%S 0,12,51,117,210,330,477,651,852,1080,1335,1617,1926,2262,2625,3015,
%T 3432,3876,4347,4845,5370,5922,6501,7107,7740,8400,9087,9801,10542,
%U 11310,12105,12927,13776,14652,15555,16485,17442,18426,19437,20475,21540,22632,23751,24897,26070,27270
%N a(n) = 3*n*(9*n - 1)/2.
%C First trisection of pentagonal numbers (A000326).
%C More generally, the ordinary generating function for the first trisection of k-gonal numbers is 3*x*(k - 1 + (2*k - 5)*x)/(1 - x)^3.
%H G. C. Greubel, <a href="/A268351/b268351.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: 3*x*(4 + 5*x)/(1 - x)^3.
%F a(n) = binomial(9*n,2)/3.
%F a(n) = A000326(3*n) = 3*A022266(n).
%F a(n) = A211538(6*n+2).
%F a(n) = A001318(6*n-1), with A001318(-1)=0.
%F a(n) = A188623(9*n-2), with A188623(-2)=0.
%F Sum_{n>=1} 1/a(n) = 0.132848490245209886617568... = (-Pi*cot(Pi/9) + 5*log(3) + 4*cos(Pi/9)*log(cos(Pi/18)) - 4*cos(2*Pi/9)*log(sin(Pi/9)) - 4*log(sin(2*Pi/9))*sin(Pi/18))/3. [Corrected by _Vaclav Kotesovec_, Feb 25 2016]
%F From _Elmo R. Oliveira_, Dec 27 2024: (Start)
%F E.g.f.: 3*exp(x)*x*(8 + 9*x)/2.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
%F a(n) = A022284(n) - n. (End)
%t Table[3 n (9 n - 1)/2, {n, 0, 45}]
%t Table[Binomial[9 n, 2]/3, {n, 0, 45}]
%t LinearRecurrence[{3, -3, 1}, {0, 12, 51}, 45]
%o (Magma) [3*n*(9*n-1)/2: n in [0..50]]; // _Vincenzo Librandi_, Feb 04 2016
%o (PARI) a(n)=3*n*(9*n-1)/2 \\ _Charles R Greathouse IV_, Jul 26 2016
%Y Cf. A000326, A001318, A016766, A022266, A022284, A081266, A188623, A211538.
%K nonn,easy
%O 0,2
%A _Ilya Gutkovskiy_, Feb 02 2016
%E Edited by _Bruno Berselli_, Feb 03 2016