Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:46:15
%S 1,2,3,4,20,45,109,275,708,1765,4442,11196,28207,70985,178755,450130,
%T 1133423,2853888,7186144,18094709,45562353,114725755,288879164,
%U 727396569,1831581574,4611915224,11612784735,29240946181,73628587619,185396495082
%N Expansion of (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).
%C In general, the ordinary generating function for the recurrence relation b(n) = b(n - 1) + 2*b(n - 2) + 3*b(n - 3) + 4*b(n - 4) + ... + k*b(n - k), with n > k - 1 and initial values b(i-1) = i for i = 1..k, is (Sum_{m = 0..(k - 1)} (-m^3 - 3*m^2 + 4*m + 6)*x^m/6)/(1 - Sum_{m = 1..k} m*x^m).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,3,4).
%F G.f.: (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).
%t LinearRecurrence[{1, 2, 3, 4}, {1, 2, 3, 4}, 30]
%t CoefficientList[Series[(1 + x - x^2 - 6 x^3) / (1 - x - 2 x^2 - 3 x^3 - 4 x^4), {x, 0, 33}], x] (* _Vincenzo Librandi_, Feb 04 2016 *)
%o (PARI) Vec((1+x-x^2-6*x^3)/(1-x-2*x^2-3*x^3-4*x^4) + O(x^40)) \\ _Michel Marcus_, Feb 02 2016
%o (Magma) [n le 4 select n else Self(n-1)+2*Self(n-2)+3*Self(n-3)+4*Self(n-4): n in [1..35]]; // _Vincenzo Librandi_, Feb 04 2016
%Y Cf. A115451, A111586.
%K nonn,easy
%O 0,2
%A _Ilya Gutkovskiy_, Feb 02 2016