|
|
A268173
|
|
a(n) = Sum_{k=0..n} (-1)^k*floor(sqrt(k)).
|
|
4
|
|
|
0, -1, 0, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -3, 2, -3, 2, -3, 2, -3, 2, -3, 2, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,10
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = floor(sqrt(n))*(-1)^n/2 - ((-1)^(floor(sqrt(n))+1)+1)/4.
a(n) = (-1)^n * Sum_{i=1..ceiling(n/2)} c(n+2-2*i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
|
|
EXAMPLE
|
a(5) = -1 = floor(sqrt(0)) - floor(sqrt(1)) + floor(sqrt(2)) - floor(sqrt(3)) + floor(sqrt(4)) - floor(sqrt(5)).
|
|
MATHEMATICA
|
Table[Sum[(-1)^k Floor[Sqrt@ k], {k, 0, n}], {n, 0, 50}] (* Michael De Vlieger, Mar 15 2016 *)
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, (-1)^k*sqrtint(k)); \\ Michel Marcus, Jan 28 2016
(PARI) a(n) = sqrtint(n)*(-1)^n/2-((-1)^(sqrtint(n)+1)+1)/4; \\ John M. Campbell, Mar 15 2016
|
|
CROSSREFS
|
Cf. A022554, A031876, A032512, A032513, A032514, A032515, A032516, A032517, A032518, A032519, A032520, A032521.
Sequence in context: A033105 A106703 A127267 * A008617 A339369 A025824
Adjacent sequences: A268170 A268171 A268172 * A268174 A268175 A268176
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
John M. Campbell, Jan 28 2016
|
|
EXTENSIONS
|
Terms a(55) and beyond from Andrew Howroyd, Mar 02 2020
|
|
STATUS
|
approved
|
|
|
|