OFFSET
0,3
FORMULA
a(0) = 0, a(n) = a(n - 1) + floor(n^(2/5)). - Alonso del Arte, Jun 18 2017
a(n) = (5/7)*n^(7/5) + O(n). - Charles R Greathouse IV, Jun 25 2017
EXAMPLE
1^(2/5) = 1.
2^(2/5) = 1.3195...
3^(2/5) = 1.5518...
4^(2/5) = 1.7411...
5^(2/5) = 1.90365...
6^(2/5) = 2.047672511...
Hence a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5, a(6) = 7.
MATHEMATICA
Accumulate[Table[Floor[n^(2/5)], {n, 0, 59}]] (* Alonso del Arte, Jun 13 2017 *)
PROG
(PARI) a(n)=sum(k=1, n, sqrtnint(k^2, 5)) \\ Charles R Greathouse IV, Jun 25 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Tixier (tixier(AT)dyadel.net)
STATUS
approved