login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268175
Smallest number k such that k*(2^(2*A000043(n))-1)+1 is prime.
0
2, 2, 4, 6, 12, 82, 14, 22, 244, 44, 120, 94, 1010, 764, 834, 1076, 516, 3252, 1384, 1664, 7040, 6104, 20942, 14344, 37142, 12522, 12554, 64160, 32172, 44460, 49400, 291726
OFFSET
1,1
COMMENTS
The numbers k*(2^(2*A000043(n))-1)+1 may be written as k*(2^A000043(n)-1)*(2^A000043(n)+1)+1 or k*Mersenne(n)*(Mersenne(n)+2)+1 and so may be proved primes.
All the numbers a(n)*(2^(2*A000043(n))-1)+1 for n=1 to 32 have been proved to be primes.
EXAMPLE
2*(2^(2*2)-1)+1 = 31 (prime) and A000043(1) = 2, so a(1) = 2.
2*(2^(2*3)-1)+1 = 127 (prime) and A000043(2) = 3, so a(2) = 2.
MATHEMATICA
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657};
lst = {}; maxk = 5000; maxn = 15;
For[n = 1, n ≤ maxn, n++,
For[k = 0, k ≤ maxk, k++,
If[PrimeQ[k*(2^(2*A000043[[n]]) - 1) + 1], AppendTo[lst, k]; Break[]]
]
];
lst (* Robert Price, Apr 05 2016 *)
CROSSREFS
Cf. A000043.
Sequence in context: A274935 A188538 A282164 * A363578 A209025 A346779
KEYWORD
nonn,more,hard
AUTHOR
Pierre CAMI, Jan 28 2016
STATUS
approved