login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268172
Binary-ternary Wedderburn-Etherington numbers.
4
0, 1, 1, 2, 4, 9, 23, 58, 156, 426, 1194, 3393, 9802, 28601, 84347, 250732, 750908, 2262817, 6857386, 20882889, 63877262, 196162762, 604567254, 1869318719, 5797113028, 18026873112, 56197262814, 175594836698, 549839459963, 1725126992844, 5422602630117, 17074281639963, 53848886560675, 170085320026578
OFFSET
0,4
COMMENTS
This is the number of non-planar binary-ternary rooted trees (every node has out-degree 0 or 2 or 3) with n leaf nodes, indexed by the number of leaf nodes (NOT the total number of nodes).
It can also be interpreted as the number of bracketings (valid placements of operation symbols) in a monomial of degree n in a nonassociative algebra with an (anti-)commutative binary operation and a completely (skew-)symmetric ternary operation.
FORMULA
See Maple code, and the recursion formula under Links.
EXAMPLE
Here are the 1, 1, 2, 4, 9, 23 bracketings for degrees 1 to 6 (using the monomial interpretation), where the binary and ternary operations are written [-,-] and [-,-,-] respectively, and the hyphen is a placeholder for the argument symbols:
Degree 1: -.
Degree 2: [-,-].
Degree 3: [[-,-],-], [-,-,-].
Degree 4: [[[-,-],-],-], [[-,-],[-,-]], [[-,-,-],-], [[-,-],-,-].
Degree 5:
[[[[-,-],-],-],-],
[[[-,-,-],-],-],
[[[-,-],[-,-]],-],
[[[-,-],-,-],-],
[[[-,-],-],[-,-]],
[[-,-,-],[-,-]],
[[[-,-],-],-,-],
[[-,-,-],-,-],
[[-,-],[-,-],-].
Degree 6:
[[[[[-,-],-],-],-],-],
[[[[-,-,-],-],-],-],
[[[[-,-],[-,-]],-],-],
[[[[-,-],-,-],-],-],
[[[[-,-],-],[-,-]],-],
[[[-,-,-],[-,-]],-],
[[[[-,-],-],-,-],-],
[[[-,-,-],-,-],-],
[[[-,-], [-,-],-],-],
[[[[-,-],-],-],[-,-]],
[[[-,-,-],-],[-,-]],
[[[-,-], [-,-]],[-,-]],
[[[-,-],-,-],[-,-]],
[[[-,-],-],[[-,-],-]],
[[[-,-],-],[-,-,-]],
[[-,-,-],[-,-,-]],
[[[[-,-],-],-],-,-],
[[[-,-,-],-],-,-],
[[[-,-],[-,-]],-,-],
[[[-,-],-,-],-,-],
[[[-,-],-],[-,-],-],
[[-,-,-],[-,-],-],
[[-,-],[-,-],[-,-]].
MAPLE
# for first Maple program see Links
# second Maple program:
b:= proc(n, i, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(v=n, 1, add(binomial(a(i)+j-1, j)*
b(n-i*j, i-1, v-j), j=0..min(n/i, v)))))
end:
a:= proc(n) option remember; `if`(n<2, n,
add(b(n, n+1-j, j), j=2..3))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 28 2016
MATHEMATICA
b[n_, i_, v_] := b[n, i, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, If[v==n, 1, Sum[Binomial[a[i]+j-1, j]*b[n-i*j, i-1, v-j], {j, 0, Min[n/i, v]}]]]]; a[n_] := a[n] = If[n<2, n, Sum[b[n, n+1-j, j], {j, 2, 3}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A001190 (Binary Wedderburn-Etherington numbers).
Cf. A000598 (Ternary Wedderburn-Etherington numbers: number of non-planar ternary rooted trees with n nodes): note that this sequence is indexed by the total number of nodes, NOT the number of leaves.
Column k=3 of A292085.
Sequence in context: A337516 A340920 A337517 * A151404 A027071 A364485
KEYWORD
easy,nonn
AUTHOR
Murray R. Bremner, Jan 27 2016
STATUS
approved