OFFSET
0,4
COMMENTS
This is the number of non-planar binary-ternary rooted trees (every node has out-degree 0 or 2 or 3) with n leaf nodes, indexed by the number of leaf nodes (NOT the total number of nodes).
It can also be interpreted as the number of bracketings (valid placements of operation symbols) in a monomial of degree n in a nonassociative algebra with an (anti-)commutative binary operation and a completely (skew-)symmetric ternary operation.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Murray R. Bremner, Maple code for binary-ternary Wedderburn-Etherington numbers
Murray R. Bremner, Recursion formula for binary-ternary Wedderburn-Etherington numbers
FORMULA
See Maple code, and the recursion formula under Links.
EXAMPLE
Here are the 1, 1, 2, 4, 9, 23 bracketings for degrees 1 to 6 (using the monomial interpretation), where the binary and ternary operations are written [-,-] and [-,-,-] respectively, and the hyphen is a placeholder for the argument symbols:
Degree 1: -.
Degree 2: [-,-].
Degree 3: [[-,-],-], [-,-,-].
Degree 4: [[[-,-],-],-], [[-,-],[-,-]], [[-,-,-],-], [[-,-],-,-].
Degree 5:
[[[[-,-],-],-],-],
[[[-,-,-],-],-],
[[[-,-],[-,-]],-],
[[[-,-],-,-],-],
[[[-,-],-],[-,-]],
[[-,-,-],[-,-]],
[[[-,-],-],-,-],
[[-,-,-],-,-],
[[-,-],[-,-],-].
Degree 6:
[[[[[-,-],-],-],-],-],
[[[[-,-,-],-],-],-],
[[[[-,-],[-,-]],-],-],
[[[[-,-],-,-],-],-],
[[[[-,-],-],[-,-]],-],
[[[-,-,-],[-,-]],-],
[[[[-,-],-],-,-],-],
[[[-,-,-],-,-],-],
[[[-,-], [-,-],-],-],
[[[[-,-],-],-],[-,-]],
[[[-,-,-],-],[-,-]],
[[[-,-], [-,-]],[-,-]],
[[[-,-],-,-],[-,-]],
[[[-,-],-],[[-,-],-]],
[[[-,-],-],[-,-,-]],
[[-,-,-],[-,-,-]],
[[[[-,-],-],-],-,-],
[[[-,-,-],-],-,-],
[[[-,-],[-,-]],-,-],
[[[-,-],-,-],-,-],
[[[-,-],-],[-,-],-],
[[-,-,-],[-,-],-],
[[-,-],[-,-],[-,-]].
MAPLE
# for first Maple program see Links
# second Maple program:
b:= proc(n, i, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(v=n, 1, add(binomial(a(i)+j-1, j)*
b(n-i*j, i-1, v-j), j=0..min(n/i, v)))))
end:
a:= proc(n) option remember; `if`(n<2, n,
add(b(n, n+1-j, j), j=2..3))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 28 2016
MATHEMATICA
b[n_, i_, v_] := b[n, i, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, If[v==n, 1, Sum[Binomial[a[i]+j-1, j]*b[n-i*j, i-1, v-j], {j, 0, Min[n/i, v]}]]]]; a[n_] := a[n] = If[n<2, n, Sum[b[n, n+1-j, j], {j, 2, 3}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Murray R. Bremner, Jan 27 2016
STATUS
approved