login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008617 Expansion of 1/((1-x^2)(1-x^7)). 9
1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,15

COMMENTS

a(n) is the number of (n+9)-digit fixed points under the base-5 Kaprekar map A165032 (see A165036 for the list of fixed points). - Joseph Myers, Sep 04 2009

It appears that this is the number of partitions of 4*n that are 8-term arithmetic progressions. Further, it seems that a(n)=[n/2]-[3n/7]. - John W. Layman, Feb 21 2012

REFERENCES

D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 214

Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 0, 1, 0, -1).

FORMULA

a(n) = floor((2*n+21+7*(-1)^n)/28). - Tani Akinari, May 19 2014

MATHEMATICA

CoefficientList[Series[1 / ((1 - x^2) (1 - x^7)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 22 2013 *)

LinearRecurrence[{0, 1, 0, 0, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 0, 1, 1, 1}, 80] (* Harvey P. Dale, May 18 2018 *)

CROSSREFS

Sequence in context: A106703 A127267 A268173 * A025824 A230037 A211262

Adjacent sequences:  A008614 A008615 A008616 * A008618 A008619 A008620

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Typo in name fixed by Vincenzo Librandi, Jun 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 04:46 EDT 2019. Contains 323579 sequences. (Running on oeis4.)