login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265795
Denominators of primes-only best approximates (POBAs) to sqrt(8); see Comments.
7
2, 2, 5, 7, 11, 59, 127, 163, 233, 653, 991, 1597, 11447, 12671, 70489
OFFSET
1,1
COMMENTS
Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.
EXAMPLE
The POBAs to sqrt(8) start with 7/2, 5/2, 13/5, 19/7, 31/11, 167/59, 359/127, 461/163, 659/233. For example, if p and q are primes and q > 59, then 167/59 is closer to sqrt(8) than p/q is.
MATHEMATICA
x = Sqrt[8]; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265794/A265795 *)
Numerator[tL] (* A265790 *)
Denominator[tL] (* A265791 *)
Numerator[tU] (* A265792 *)
Denominator[tU] (* A265793 *)
Numerator[y] (* A265794 *)
Denominator[y] (* A265795 *)
KEYWORD
nonn,frac,more
AUTHOR
Clark Kimberling, Dec 29 2015
EXTENSIONS
a(13)-a(15) from Robert Price, Apr 06 2019
STATUS
approved