login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of primes-only best approximates (POBAs) to sqrt(8); see Comments.
7

%I #14 Apr 06 2019 12:50:49

%S 2,2,5,7,11,59,127,163,233,653,991,1597,11447,12671,70489

%N Denominators of primes-only best approximates (POBAs) to sqrt(8); see Comments.

%C Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

%e The POBAs to sqrt(8) start with 7/2, 5/2, 13/5, 19/7, 31/11, 167/59, 359/127, 461/163, 659/233. For example, if p and q are primes and q > 59, then 167/59 is closer to sqrt(8) than p/q is.

%t x = Sqrt[8]; z = 1000; p[k_] := p[k] = Prime[k];

%t t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];

%t d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)

%t t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];

%t d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)

%t v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];

%t b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];

%t y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265794/A265795 *)

%t Numerator[tL] (* A265790 *)

%t Denominator[tL] (* A265791 *)

%t Numerator[tU] (* A265792 *)

%t Denominator[tU] (* A265793 *)

%t Numerator[y] (* A265794 *)

%t Denominator[y] (* A265795 *)

%Y Cf. A000040, A010466, A265759, A265790, A265791, A265792, A265793, A265794.

%K nonn,frac,more

%O 1,1

%A _Clark Kimberling_, Dec 29 2015

%E a(13)-a(15) from _Robert Price_, Apr 06 2019