|
|
A265794
|
|
Numerators of primes-only best approximates (POBAs) to sqrt(8); see Comments.
|
|
7
|
|
|
7, 5, 13, 19, 31, 167, 359, 461, 659, 1847, 2803, 4517, 32377, 35839, 199373
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.
|
|
LINKS
|
|
|
EXAMPLE
|
The POBAs to sqrt(8) start with 7/2, 5/2, 13/5, 19/7, 31/11, 167/59, 359/127, 461/163, 659/233. For example, if p and q are primes and q > 59, then 167/59 is closer to sqrt(8) than p/q is.
|
|
MATHEMATICA
|
x = Sqrt[8]; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|