login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265796
Numerators of lower primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments.
9
3, 11, 37, 163, 173, 241, 571, 1231, 1571, 2351, 3571, 25463, 69247
OFFSET
1,1
COMMENTS
Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.
EXAMPLE
The lower POBAs to tau start with 3/2, 11/7, 37/23, 163/101, 173/107, 241/149. For example, if p and q are primes and q > 101, and p/q < tau, then 163/101 is closer to tau than p/q is.
MATHEMATICA
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *)
Numerator[tL] (* A265796 *)
Denominator[tL] (* A265797 *)
Numerator[tU] (* A265798 *)
Denominator[tU] (* A265799 *)
Numerator[y] (* A265800 *)
Denominator[y] (* A265801 *)
KEYWORD
nonn,frac,more
AUTHOR
Clark Kimberling, Dec 29 2015
EXTENSIONS
a(12)-a(13) from Robert Price, Apr 06 2019
STATUS
approved