OFFSET
0,3
COMMENTS
Partial sums of 16-gonal (or hexadecagonal) pyramidal numbers. Therefore, this is the case k=7 of the general formula n*(n + 1)*(n + 2)*(k*n - k + 2)/12, which is related to 2*(k+1)-gonal pyramidal numbers.
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Pyramidal Number
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: x*(1 + 13*x)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A172076(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015
MATHEMATICA
Table[n (n + 1) (n + 2) (7 n - 5)/12, {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 18, 80, 230}, 40] (* Harvey P. Dale, Sep 27 2018 *)
PROG
(Magma) [n*(n+1)*(n+2)*(7*n-5)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
(PARI) a(n)=n*(n+1)*(n+2)*(7*n-5)/12 \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 26 2015
STATUS
approved