login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264850
a(n) = n*(n + 1)*(n + 2)*(7*n - 5)/12.
3
0, 1, 18, 80, 230, 525, 1036, 1848, 3060, 4785, 7150, 10296, 14378, 19565, 26040, 34000, 43656, 55233, 68970, 85120, 103950, 125741, 150788, 179400, 211900, 248625, 289926, 336168, 387730, 445005, 508400, 578336, 655248, 739585, 831810, 932400, 1041846
OFFSET
0,3
COMMENTS
Partial sums of 16-gonal (or hexadecagonal) pyramidal numbers. Therefore, this is the case k=7 of the general formula n*(n + 1)*(n + 2)*(k*n - k + 2)/12, which is related to 2*(k+1)-gonal pyramidal numbers.
FORMULA
G.f.: x*(1 + 13*x)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A172076(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015
MATHEMATICA
Table[n (n + 1) (n + 2) (7 n - 5)/12, {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 18, 80, 230}, 40] (* Harvey P. Dale, Sep 27 2018 *)
PROG
(Magma) [n*(n+1)*(n+2)*(7*n-5)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
(PARI) a(n)=n*(n+1)*(n+2)*(7*n-5)/12 \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
Cf. A172076.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12: A000292 (k=0), A002415 (which arises from k=1), A002417 (k=2), A002419 (k=3), A051797 (k=4), A051799 (k=5), A220212 (k=6), this sequence (k=7), A264851 (k=8), A264852 (k=9).
Sequence in context: A342560 A219144 A063495 * A039408 A043231 A044011
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 26 2015
STATUS
approved