OFFSET
0,2
COMMENTS
4-dimensional pyramidal number, composed of consecutive 3-dimensional slices; each of which is a 3-dimensional 12-gonal (or dodecagonal) pyramidal number; which in turn is composed of consecutive 2-dimensional slices 12-gonal numbers. - Jonathan Vos Post, Mar 17 2006
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
LINKS
FORMULA
a(n) = C(n+3, 3)*(5*n+2)/2 = (n+1)*(n+2)*(n+3)*(5*n+2)/12.
G.f.: (1+9*x)/(1-x)^5.
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = (125*log(5) + 10*sqrt(5*(5-2*sqrt(5)))*Pi - 50*sqrt(5)*log(phi) - 84)/104, where phi is the golden ratio (A001622).
Sum_{n>=0} (-1)^n/a(n) = (50*sqrt(5)*log(phi) + 5*sqrt(50-10*sqrt(5))*Pi - 256*log(2) + 90)/52. (End)
MATHEMATICA
Accumulate[Table[n(n+1)(10n-7)/6, {n, 0, 50}]] (* Harvey P. Dale, Nov 13 2013 *)
PROG
(Magma) /* A000027 convolved with A051624 (excluding 0): */ A051624:=func<n | n*(5*n-4)>; [&+[(n-i+1)*A051624(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Dec 11 1999
STATUS
approved