OFFSET
1,1
COMMENTS
The identity (16*(n-1) + 15)^2 - (16*n^2 - 2*n)*4^2 = 1 can be written as A125169(n-1)^2 - a(n)*4^2 = 1. - Vincenzo Librandi, Feb 01 2012
Sequence found by reading the line from 14, in the direction 14, 60, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
The continued fraction expansion of sqrt(a(n)) is [4n-1; {1, 2, 1, 8n-2}]. - Magus K. Chu, Nov 08 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(-14 - 18*x)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MAPLE
seq(16*n^2-2*n, n=1..40); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {14, 60, 138}, 40]
PROG
(Magma) [16*n^2-2*n: n in [1..40]]
(PARI) a(n) = 16*n^2-2*n.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 12 2009
STATUS
approved