This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158058 16n^2 - 2n. 2
 14, 60, 138, 248, 390, 564, 770, 1008, 1278, 1580, 1914, 2280, 2678, 3108, 3570, 4064, 4590, 5148, 5738, 6360, 7014, 7700, 8418, 9168, 9950, 10764, 11610, 12488, 13398, 14340, 15314, 16320, 17358, 18428, 19530, 20664, 21830, 23028, 24258, 25520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (16*(n-1)+15)^2-(16*n^2-2*n)*4^2=1 can be written as A125169(n-1)^2-a(n)*4^2=1. - Vincenzo Librandi, Feb 01 2012 Sequence found by reading the line from 14, in the direction 14, 60,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)). Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(-14-18*x)/(x-1)^3. a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). MAPLE seq(16*n^2-2*n, n=1..40); # Nathaniel Johnston, Jun 26 2011 MATHEMATICA LinearRecurrence[{3, -3, 1}, {14, 60, 138}, 40] PROG (MAGMA) [16*n^2-2*n: n in [1..40]] (PARI) a(n) = 16*n^2-2*n. CROSSREFS Cf. A125169. Sequence in context: A062022 A277986 A261282 * A100171 A063492 A051799 Adjacent sequences:  A158055 A158056 A158057 * A158059 A158060 A158061 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.