login
A158058
a(n) = 16*n^2 - 2*n.
2
14, 60, 138, 248, 390, 564, 770, 1008, 1278, 1580, 1914, 2280, 2678, 3108, 3570, 4064, 4590, 5148, 5738, 6360, 7014, 7700, 8418, 9168, 9950, 10764, 11610, 12488, 13398, 14340, 15314, 16320, 17358, 18428, 19530, 20664, 21830, 23028, 24258, 25520
OFFSET
1,1
COMMENTS
The identity (16*(n-1) + 15)^2 - (16*n^2 - 2*n)*4^2 = 1 can be written as A125169(n-1)^2 - a(n)*4^2 = 1. - Vincenzo Librandi, Feb 01 2012
Sequence found by reading the line from 14, in the direction 14, 60, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
The continued fraction expansion of sqrt(a(n)) is [4n-1; {1, 2, 1, 8n-2}]. - Magus K. Chu, Nov 08 2022
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)).
FORMULA
G.f.: x*(-14 - 18*x)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MAPLE
seq(16*n^2-2*n, n=1..40); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {14, 60, 138}, 40]
PROG
(Magma) [16*n^2-2*n: n in [1..40]]
(PARI) a(n) = 16*n^2-2*n.
CROSSREFS
Cf. A125169.
Sequence in context: A062022 A277986 A261282 * A100171 A063492 A051799
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 12 2009
STATUS
approved