OFFSET
0,1
COMMENTS
The identity (16*n + 15)^2 - (16*(n+1)^2 - 2*(n+1))*4^2 = 1 can be written as a(n)^2 - A158058(n+1)*4^2 = 1. - Vincenzo Librandi, Feb 01 2012
a(n-3), n >= 3, appears in the third column of triangle A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Tanya Khovanova, Recursive Sequences
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-2); a(0)=15, a(1)=31. - Harvey P. Dale, Jan 03 2012
O.g.f: (15 + x)/(1 - x)^2. - Wolfdieter Lang, Mar 14 2014
MATHEMATICA
Table[16n + 15, {n, 0, 100}]
LinearRecurrence[{2, -1}, {15, 31}, 100] (* or *) Range[15, 1620, 16] (* Harvey P. Dale, Jan 03 2012 *)
PROG
(Magma) I:=[15, 31]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // Vincenzo Librandi, Jan 04 2012
(PARI) a(n) = 16*n + 15 \\ Vincenzo Librandi, Jan 04 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Nov 22 2006
STATUS
approved