login
A051800
Numbers k such that 1 plus twice the product of the first k primes is also a prime.
0
1, 2, 3, 4, 5, 11, 18, 23, 26, 30, 80, 120, 148, 220, 395, 776, 884, 977, 3535, 3927
OFFSET
1,2
EXAMPLE
5 is in the sequence because 2*(2*3*5*7*11) + 1 = 4621 is prime.
MATHEMATICA
Position[2#+1&/@FoldList[Times, Prime[Range[800]]], _?PrimeQ]//Flatten (* Harvey P. Dale, Oct 09 2018 *)
PROG
(PARI) isok(k) = isprime(1+2*prod(j=1, k, prime(j))); \\ Michel Marcus, May 28 2018
(Python)
from sympy import isprime, nextprime
def afind(limit):
p, primorialk = 2, 2
for k in range(1, limit+1):
if isprime(2*primorialk + 1):
print(k, end=", ")
p = nextprime(p)
primorialk *= p
afind(400) # Michael S. Branicky, Dec 24 2021
CROSSREFS
2*A002110(n)+1 is prime. Cf. A051887, A051915.
Sequence in context: A372491 A333610 A052418 * A121432 A118968 A073528
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Dec 20 1999
EXTENSIONS
More terms from Harvey P. Dale, Oct 09 2018
a(17)-a(18) from Michael S. Branicky, Dec 24 2021
a(19)-a(20) from Michael S. Branicky, May 30 2023
STATUS
approved