login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140184
a(n) = 2*a(n-1) + 16*a(n-2) + 16*a(n-3) for n>3 with a(1)=1, a(2)=14, a(3)=60.
0
1, 14, 60, 360, 1904, 10528, 57280, 313472, 1711872, 9355776, 51117056, 279316480, 1526198272, 8339333120, 45566902272, 248982306816, 1360464379904, 7433716105216, 40618579197952, 221944046157824, 1212724817166336, 6626451640025088, 36207605093236736
OFFSET
1,2
FORMULA
G.f.: -x*(1+12*x+16*x^2) / ( (2*x+1)*(8*x^2+4*x-1) ). - Harvey P. Dale, May 03 2011
a(n) = (A180222(n+2) +(-2)^n)/2. - R. J. Mathar, Oct 08 2016
EXAMPLE
a(5) = 1904 = 2*a(4) + 16*a(3) + 16*a(2) = 2*360 + 16*60 + 16*14.
a(4) = 360 since term (1,1) of X^4 = 360.
MATHEMATICA
LinearRecurrence[{2, 16, 16}, {1, 14, 60}, 40] (* or *) CoefficientList[Series[(-1-12 x-16 x^2)/(-1+2 x+16 x^2+16 x^3), {x, 0, 40}], x] (* Harvey P. Dale, May 03 2011 *)
CROSSREFS
Cf. A180222.
Sequence in context: A063492 A051799 A164540 * A264854 A189948 A252255
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 11 2008
STATUS
approved