OFFSET
0,3
COMMENTS
Due to its generation rule, a(n+1) is the sum of floor(log_10(a(n)))+1 terms of A000217 (triangular numbers), as the name suggests.
This is easy to verify by observing the following table:
+----+-----+----+----+---+-----+
| n | Tn | Tn'| Tn"|...| a(n)|
+----+-----+----+----+---+-----+
| 1 | 1 | | | | 1 |
| 2 | 3 | | | | 3 |
| 3 | 6 | | | | 6 |
| 4 | 10 | | | | 10 |
| 5 | 15 | 1 | | | 16 |
| 6 | 21 | 3 | | | 24 |
| 7 | 28 | 6 | | | 34 |
| 8 | 36 | 10 | | | 46 |
| 9 | 45 | 15 | | | 60 |
| 10 | 55 | 21 | | | 76 |
| 11 | 66 | 28 | | | 94 |
| 12 | 78 | 36 | | | 114 |
| 13 | 91 | 45 | 1 | | 137 |
| 14 | 105 | 55 | 3 | | 163 |
| 15 | 120 | 66 | 6 | | 192 |
.
LINKS
Francesco Di Matteo, Table of n, a(n) for n = 0..100
FORMULA
a(n) = T(n) + T(n-k(1)) + T(n-(k(1)+ k(2))) + T(n-(k(1)+ k(2) + k(3))) + ... + T(n - Sum_{j=1..i} k(j)) with (n - Sum_{j=1..i} k(j)) > 0, where T are the triangular numbers and where k(j) is A265108(j).
E.g., a(25) = T(25) + T(25 - 4) + T(25 - 4 - 8) = 325 + 231 + 91 = 647.
G.f.: (1-x)^(-3) * Sum_{k>=1} x^(b(k)+1) where b(k) is the first m such that a(m) has k decimal digits (including b(1)=0). - Robert Israel, Dec 14 2015
a(n+1) = 2*a(n) - a(n-1) + floor(log_10(a(n))) + 1. - Danny Rorabaugh, Jan 20 2016
EXAMPLE
a(1) = 1 = 0 + 1 because a(0) = 0 and 0 has 1 digit.
...
a(6) = 24 = 16 + 8 because a(5) = 16 and 0, 1, 3, 6, 10, 16 have 8 digits.
a(7) = 34 = 24 + 10 because a(6) = 24 and 0, 1, 3, 6, 10, 16, 24 have 10 digits.
MAPLE
a[0]:= 0: d[0]:= 1;
for n from 1 to 300 do
a[n]:= a[n-1] + d[n-1];
d[n]:= d[n-1] + ilog10(a[n])+1;
od:
seq(a[i], i=0..300); # Robert Israel, Dec 14 2015
MATHEMATICA
a = {0}; Do[AppendTo[a, a[[n - 1]] + Length@ Flatten@ Map[IntegerDigits, a]], {n, 2, 68}]; a (* Michael De Vlieger, Nov 27 2015 *)
PROG
(Python)
a, b = 0, 0
print(a, end=', ')
for k in range(1, 101):
b += len(str(a))
a += b
print(a, end=', ')
(PARI) lista(nn) = {v = vector(nn); for (i=2, nn, v[i] = v[i-1] + sum(k=1, i-1, #Str(v[k])); ); v; } \\ Michel Marcus, Dec 05 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Francesco Di Matteo, Nov 26 2015
STATUS
approved