login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264847
Pluritriangular numbers: a(0) = 0; a(n+1) = a(n) + the number of digits in terms a(0)..a(n).
4
0, 1, 3, 6, 10, 16, 24, 34, 46, 60, 76, 94, 114, 137, 163, 192, 224, 259, 297, 338, 382, 429, 479, 532, 588, 647, 709, 774, 842, 913, 987, 1064, 1145, 1230, 1319, 1412, 1509, 1610, 1715, 1824, 1937, 2054, 2175, 2300, 2429, 2562, 2699, 2840, 2985, 3134, 3287, 3444, 3605, 3770, 3939
OFFSET
0,3
COMMENTS
Due to its generation rule, a(n+1) is the sum of floor(log_10(a(n)))+1 terms of A000217 (triangular numbers), as the name suggests.
This is easy to verify by observing the following table:
+----+-----+----+----+---+-----+
| n | Tn | Tn'| Tn"|...| a(n)|
+----+-----+----+----+---+-----+
| 1 | 1 | | | | 1 |
| 2 | 3 | | | | 3 |
| 3 | 6 | | | | 6 |
| 4 | 10 | | | | 10 |
| 5 | 15 | 1 | | | 16 |
| 6 | 21 | 3 | | | 24 |
| 7 | 28 | 6 | | | 34 |
| 8 | 36 | 10 | | | 46 |
| 9 | 45 | 15 | | | 60 |
| 10 | 55 | 21 | | | 76 |
| 11 | 66 | 28 | | | 94 |
| 12 | 78 | 36 | | | 114 |
| 13 | 91 | 45 | 1 | | 137 |
| 14 | 105 | 55 | 3 | | 163 |
| 15 | 120 | 66 | 6 | | 192 |
.
It is evident that each new Tn sequence starts after each a(k) terms of A265108, corresponding to the n (number of digits) change, as also pointed out in A265108 (see also Formula).
LINKS
Francesco Di Matteo, Table of n, a(n) for n = 0..100
FORMULA
a(n) = T(n) + T(n-k(1)) + T(n-(k(1)+ k(2))) + T(n-(k(1)+ k(2) + k(3))) + ... + T(n - Sum_{j=1..i} k(j)) with (n - Sum_{j=1..i} k(j)) > 0, where T are the triangular numbers and where k(j) is A265108(j).
E.g., a(25) = T(25) + T(25 - 4) + T(25 - 4 - 8) = 325 + 231 + 91 = 647.
G.f.: (1-x)^(-3) * Sum_{k>=1} x^(b(k)+1) where b(k) is the first m such that a(m) has k decimal digits (including b(1)=0). - Robert Israel, Dec 14 2015
a(n+1) = 2*a(n) - a(n-1) + floor(log_10(a(n))) + 1. - Danny Rorabaugh, Jan 20 2016
EXAMPLE
a(1) = 1 = 0 + 1 because a(0) = 0 and 0 has 1 digit.
...
a(6) = 24 = 16 + 8 because a(5) = 16 and 0, 1, 3, 6, 10, 16 have 8 digits.
a(7) = 34 = 24 + 10 because a(6) = 24 and 0, 1, 3, 6, 10, 16, 24 have 10 digits.
MAPLE
a[0]:= 0: d[0]:= 1;
for n from 1 to 300 do
a[n]:= a[n-1] + d[n-1];
d[n]:= d[n-1] + ilog10(a[n])+1;
od:
seq(a[i], i=0..300); # Robert Israel, Dec 14 2015
MATHEMATICA
a = {0}; Do[AppendTo[a, a[[n - 1]] + Length@ Flatten@ Map[IntegerDigits, a]], {n, 2, 68}]; a (* Michael De Vlieger, Nov 27 2015 *)
PROG
(Python)
a, b = 0, 0
print(a, end=', ')
for k in range(1, 101):
b += len(str(a))
a += b
print(a, end=', ')
(PARI) lista(nn) = {v = vector(nn); for (i=2, nn, v[i] = v[i-1] + sum(k=1, i-1, #Str(v[k])); ); v; } \\ Michel Marcus, Dec 05 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Francesco Di Matteo, Nov 26 2015
STATUS
approved